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Abstract 

Three-dimensional (3D) segmentation of the prostate in medical images is useful 

for prostate cancer diagnosis and therapy guidance. However, manual segmentation of 

the prostate is laborious and time-consuming with inter-observer variability at the 

prostatic apex, mid-gland, and base. The focus of this thesis was on: (1) accuracy, 

reproducibility and procedure time measurement for prostate segmentation on T2-

weighted endorectal (ER) magnetic resonance (MR) imaging (MRI), and (2) assessment 

of the potential of a computer-assisted segmentation technique to be translated to clinical 

practice for prostate cancer management. 

We collected 42 ER MR images from patients with biopsy-confirmed prostate 

cancer. Prostate border delineation was manually performed by one observer on all the 

images and by two other observers on a subset of 10 images. 

We developed a novel semi-automatic and automatic prostate segmentation 

algorithms that identify candidate prostate boundary points using learned local prostate 

border appearance characteristics, which were regularized according to learned prostate 

shape information to produce the final segmentation. The main novelties of the 

algorithms are that the segmentations was based on local appearance similarity of the 

prostate border across patients, rather than on the appearance of the entire image. This 

makes the appearance-based segmentation more robust to inter-patient variation of 

prostate gland internal appearance that could be caused by variable spatial distribution of 

cancer in the patients. We evaluated our method against the manual reference 

segmentations using mean absolute distance (MAD), Dice similarity coefficient (DSC), 

recall rate, precision rate, and volume difference as a complementary boundary-, region- 



www.manaraa.com

ii 

 

and volume-based error metric set to measure the different types of observed 

segmentation errors. We applied this evaluation for expert manual segmentation as well 

as semi-automatic and automatic segmentation approaches before and after manual 

editing by expert physicians. Physicians were instructed to edit the segmentations to their 

satisfaction for use in clinical procedures, as would be done with any prostate 

segmentation technique integrated into the clinical workflow. We recorded the time 

needed for user interaction to initialize the semi-automatic algorithm, algorithm 

execution, and manual editing where applicable. 

On 42 images, comparing to a single-observer manual segmentation reference, the 

measured errors for semi-automatic and automatic algorithm on whole prostate gland 

were, respectively, MAD of 2.0 mm and 3.2 mm; DSC of 82% and 71%; recall of 77% 

and 69%; precision of 88% and 76%; and ΔV of -4.6 cm3 and -3.6 cm3. These results 

compared favourably with observed difference between manual segmentation and a 

simultaneous truth and performance level estimation (STAPLE) reference for a subset of 

10 images (whole gland differences as high as MAD = 3.1 mm, DSC = 78%, recall = 

66%, precision = 77%, and ΔV = 15.5 cm3). For each 3D image, the semi-automatic 

algorithm required about 30 seconds, on average, to be initialized. Using an unoptimized 

Matlab research platform on a single CPU core, the average execution times for semi-

automatic and automatic algorithm were 85 seconds and 54 seconds, respectively, to 

segment a prostate MRI in 3D. We also measured average editing times of 330 and 390 

seconds for the semi-automatic and automatic segmentation results, respectively, whereas 

an expert spent 210 seconds on average editing manual segmentations performed by 

another expert. Inter-operator variability resulting from using our computer-assisted 



www.manaraa.com

iii 

 

algorithms to generate starting segmentations for manual editing was not substantially 

higher than that resulting from using expert manual segmentations as starting 

segmentations, suggesting a role for our (semi-)automated segmentation algorithm in this 

context. 

The presented algorithms used learned local appearance characteristics and 

prostate shape separately to segment the prostate and regularize the segmentation, 

respectively. The semi-automatic algorithm needed minimal user interaction of 

approximately 30 seconds to be initialized; this was replaced by about 3 seconds of 

computational time using the automatic segmentation. Both algorithms are highly 

parallelizable. 

The main conclusions of this thesis were that: (1) computer-assisted segmentation 

approaches reduced the inter-observer segmentation variability compared to manual 

segmentation, (2) the accuracy of the computer-assisted approaches was near to or within 

the range of observed variability in manual prostate segmentation performed by experts, 

(3) manual editing of semi-automated and automated segmentation approaches improved 

the accuracy and inter-operator variability, (4) the recorded procedure time for prostate 

segmentation was reduced using computer-assisted segmentation approaches followed by 

manual editing  compared to fully manual segmentation, and (5) starting the manual 

segmentation from an initial computer-assisted segmentation label could yield lower 

variability in the final segmentations and the choice of automatic vs. semi-automatic 

segmentation comes down to operator preference. 
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Chapter 1. 

  

Introduction 

Three-dimensional (3D) segmentation of the prostate in medical images is useful 

for diagnosis and treatment planning of prostate cancer (PCa) [1, 2]. Magnetic resonance 

imaging (MRI) is increasingly being utilitized for PCa diagnosis and staging [3]. More 

specifically, T2-weighted (T2w) MRI is superior to other MRI sequences in anatomy 

visualization and is most commonly used for contouring the prostate boundary [3]. 

Endorectal receiver (ER) coil MRI provides improved image quality by increasing the 

contrast and signal-to-noise ratio [4-6]. However, the ER coil causes substantial 

deformation of the prostate tissue [7, 8] and also renders fine details and edges more 

salient in the magnetic resonance (MR) images, presenting an additional challenge to 

segmentation algorithms developed for use on MR images acquired without an ER coil. 

Manual contouring of the prostate on MRI is a time-consuming task with substantial 

inter-observer variability [9]. This is an important issue in clinical trials involving 

multiple investigators performing radiation therapy planning, in which inter-operator 

variation in contouring could materially impact the trial results. The impact of inter-

operator contouring variability on clinical outcomes is unknown and has not yet been 

extensively studied [1]. 

Manual contouring of the prostate is a labourious and time-consuming task [10, 

11]. Employing a computer-assisted algorithm for prostate segmentation could facilitate 

the contouring task by making it faster with minimal required user interaction. It also 

could help in the establishment of clinical methods that require the prostate to be 



www.manaraa.com

2 

 

segmented more than once during the course of the treatment. For example, recontouring 

the prostate over the course of radiation therapy (RT) could help radiotherapists to adjust 

the plan based on the evolving condition of the patient [12]. 

Several algorithms have been presented in the literature for 3D segmentation of 

the prostate on T2W MRI acquired with an ER coil [13-16]. Predominantly, in the 

published studies the accuracy of the segmentation results was evaluated by comparison 

to a single-observer reference standard manual segmentation of each image in the data 

set. However, due to high inter-observer variation in manual contouring of the prostate by 

experts, there is no gold standard for prostate contouring on MRI [1] and this challenges 

the comparison of error metric values obtained from different segmentation algorithms on 

different data sets. Furthermore, in most studies, the choice of segmentation error metrics 

is somewhat arbitrary and not determined based on clinical demands [1]. The use of a set 

of complementary error metrics to capture most types of medically relevant segmentation 

errors is beneficial to assessing an algorithm’s suitability for clinical translation. 

Comparing two commonly-used metrics, surface-based error metrics such as the mean 

absolute distance (MAD) between segmentation boundaries are usually more sensitive to 

local misalignments of the shape surfaces. Region-based metrics such as the Dice 

similarity coefficient (DSC), are measured based on the overlap area or volume and they 

are less sensitive to error types like sharp local surface misalignments. The 

appropriateness of a particular method depends on the intended use of the segementation. 

For example, a local surface misalignment in radiation therapy could be neglected using a 

region-based error metric but this error might cause an overdose of healthy tissues or an 

underdose of the tumour volume. 
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The focus of this thesis is to comprehensively evaluate the prostate segmentation 

accuracy and inter-operator variability and to compare novel semi-automatic and fully 

automatic computer-assisted segmentation algorithms with manual segmentation in terms 

of accuracy, reproducibility and required operator interaction time. The remainder of this 

chapter describes PCa prevalence and its clinical diagnosis and treatment methods; the 

role of medical imaging, specifically MRI, in diagnosis and treatment planning of the 

PCa; and the role of prostate contouring in MRI-guided or MRI-targeted procedures. 

1.1 Anatomy of the prostate gland 

The prostate is a part of the reproductive and urinary system of the male human 

body. A normal and healthy prostate is usually a walnut-sized gland that is located just 

below the bladder, anterior to the rectum and posterior to the pubic symphysis. It has an 

inverted pyramid shape with the base abutting the bladder and the apex abutting the 

urogenital diaphragm (Figure 1.1). It surrounds the bladder neck and the urethra. 

Additional structures such as seminal vesicles, neurovascular bundles (NVBs) and 

muscles also surround the prostate gland. Figure 1.1 shows the prostate location in the 

male reproductive system. 

The prostate gland is divided into three different zones with different embryologic 

origins: the peripheral zone, transition zone, and central zone. In a healthy prostate, the 

peripheral zone forms about 70% of the prostate gland volume. It surrounds the urethra at 

the prostate apex and extends posterolaterally to the prostate base. The central zone 

contains the ejaculatory ducts and accounts for about 25% of the prostate tissue. The 

transition zone comprises only 5% to 10% of the gland volume and is located between 



www.manaraa.com

4 

 

the peripheral and the central zones. Figure 1.2 shows the anatomy of the prostate gland 

and its zones. 

 

 

Figure 1.1: Prostate location in the reproductive system of the male human body. 

Adapted from [17]. 

 

Figure 1.2: Prostate gland zonal anatomy. CZ: central zone, TZ: transition zone, and PZ: 

peripheral zone 
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1.2 Prostate cancer and its prevalence 

PCa is the most commonly diagnosed cancer in men in North America, excluding 

skin cancer [18, 19]. The American Cancer Society predicts that in 2015 over 220,000 

new cases of PCa will be diagnosed; this represents approximately one quarter of all 

cancers among men. The American Cancer Society also predicts over 27,000 deaths from 

PCa in the United States in 2015 [18]. In Canada, one out of eight men will be diagnosed 

with PCa within his lifetime. Approximately 24,000 new cases of PCa are predicted to be 

diagnosed in Canada in 2015. PCa is also the second cause of death by cancer among 

Canadian men [19]. About 98% of PCa cases occur in men aged 50 years and older [20]. 

Prostate tumour cells develop in widely different patterns, at different growth 

rates, and with different aggressiveness and metastatic ability. There also exist benign 

prostate tumours that are not cancerous. Benign tumours can cause problems, such as 

pain and urination difficulties, but usually they are not life threatening and they do not 

spread to other organs of the body. Due to the wide variation in prostate tumour types, 

accurate and reliable diagnosis of PCa is vital for planning effective treatment that is 

appropriate to the aggressiveness level of the disease. Tumour size, location and extent, 

and the type of carcinoma are considered by clinicians during treatment selection. 

1.3 Prostate cancer screening and diagnosis 

In general, screening means testing for a disease in healthy and asymptomatic 

populations to identify and treat the disease at earlier stages, whereas diagnosis refers to 

detecting disease among individuals having symptoms and signs. Since PCa is usually 

asymptomatic in the early stages, there are some screening tests such as digital rectal 

examination (DRE), prostate-specific antigen (PSA) blood testing and transrectal 



www.manaraa.com

6 

 

ultrasound (TRUS) imaging [21] to help in identifying the PCa in its early stages. It has 

been shown that about 75% of PCa would not be diagnosed early without PSA screening 

in the population [22] and there is no doubt that early diagnosis of aggressive PCa is 

helpful to preventing cancer spread to other organs. An early and accurate diagnosis helps 

to treat the patient more efficiently and effectively. However, screening in PCa is still a 

controversial subject [23-26]. On one hand, there is evidence that PCa screening could 

reduce the rate of advanced and metastatic PCa [25, 26]. On the other hand, there is a 

higher probability of missing a fast-growing tumour in the interval between PCa 

screening tests [24], implying that screening is a less effective approach for diagnosis of 

fast-growing PCa tumours compared to slow-growing tumours that are usually less life-

threatening. Moreover, early diagnosis of PCa through screening tests could be also 

harmful due to potential overdiagnosis and overtreatment of the disease [23]. 

Overtreatment of PCa is especially concerning in patients for whom treatment is 

associated with minimal benefit compared to active surveillance (e.g. patients older than 

65 years [27]). 

The success of screening processes depends on two principal conditions: (1) there 

are available tests to detect the disease at the early stages, and (2) there are effective 

treatments for the disease at the early stages [24]. Therefore, to improve the benefits of 

screening it is necessary to improve the accuracy, sensitivity and specificity of the cancer 

detection methods as well as the efficiency of the treatment procedures. 

In the following subsections, we briefly introduce the standard tests that are 

typically used for PCa screening and diagnosis. 
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1.3.1 Digital rectal examination 

DRE is a PCa screening test. During the test, the physician uses a gloved 

lubricated finger to palpate the prostate gland through rectum to examine the prostate for 

any irregularities in shape, size and texture (Figure 1.3). The detection rate of DRE by 

itself is low [28]. Sensitivities of 40% to 55% has been reported in the literature for DRE 

[28-30]. However, there are cancers that are detected by DRE alone or could be 

diagnosed through DRE earlier than with PSA blood testing and ultrasound imaging [31]. 

Therefore, considering also the simplicity and availability of the test, DRE is routinely 

used for screening. 

 

Figure 1.3: Digital rectal examination (DRE) Adapted from [17].  

 

1.3.2 Prostate specific antigen test 

PSA is a protein that is produced by the prostate gland and released into the 

bloodstream. Most of the time, when an abnormality such as PCa occurs in the prostate, 
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more PSA is released into the blood stream. During a PSA test, a small amount of blood 

is taken and the level of PSA in the blood is measured. A high level of PSA in the blood 

or a rapid elavation of the PSA level over time are considered as signs of suspicion for 

PCa. 

There is not any level of PSA in the blood defined as normal. However, 

traditionally, PSA levels of 4 ng/mL are considered as a cutoff point to distinguished 

normal from abnormal. PSA levels above 10 ng/mL are usually considered as high PSA 

level that is suspicious for advanced or metastatic PCa. According to American Cancer 

Society guidlines for early detection of PCa, if the PSA level is lower than 2.5 ng/mL, 

screening could be conducted every two years, and for PSA levels of 2.5 ng/mL and 

above the screening interval should be one year. It also suggests biopsy for men at 

average risk for PCa whose PSA level is 4.0 ng/mL or greater. For individuals at high 

risk for cancer when the PSA level is within the range of 2.5 ng/mL to 4.0 ng/mL 

individualized diagnosis planning is suggested [32]. 

1.3.3 Prostate biopsy 

Patients with abnormal DRE or high or elevated PSA levels are referred for 

prostate biopsy [32]. Currently, prostate needle biopsy is the clinical standard for 

diagnosis of PCa. This is an outpatient procedure which is done under local anesthesia. 

During the biopsy process a thin needle is inserted through either the rectal wall 

(transrectal biopsy) or the perineum and usually 6 to 24 (typically about 12) small 

samples of the prostate are taken from different parts of the gland [33]. Transrectal 

prostate biopsy is most common. This process is usually done under two-dimensional 

(2D) TRUS imaging guidance. Figure 1.4 shows a schematic depicting transrectal 
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prostate biopsy. The biopsy samples are sent to a pathology laboratory, where a 

pathologist looks at the specimens under a microscope and reports on the presence and 

grade of PCa. The pathologist categorizes cancerous foci using a standard grading system 

called the Gleason grading system [34]. The number of biopsy samples that are cancerous 

and the percentage of cancer in each biopsy core are also reported. Since about 30% of 

cancers are missed during the first TRUS-guided prostate biopsy [35, 36], for individuals 

with persistently elevated PSA or positive DRE whose initial biopsy did not detect 

cancer, repeat biopsy is required [36]. 

  

Figure 1.4: Diagram depicting transrectal prostate biopsy. Adapted from [17]. 

1.3.4 Grading and staging of prostate cancer 

PCa grading: The Gleason system is one of the most commonly used systems for 

gradig PCa in pathological samples. The Gleason system was first presented in 1966 by 

Donald F. Gleason [37] and it became more popular in North America in the late 1980s 

and early 1990s. The grading system is based on tissue architecture at the cellular level 
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and refers to identification of aggressiveness of the cancer cells based on their histologic 

pattern of arrangement [34]. In the Gleason grading system, nine fundamental tumour cell 

patterns are defined under 5 grades; grade 1 to grade 5, with lower grades being closer to 

normal tissue and higher grades being more aggressive. Within the prostate, the first and 

second most predominant Gleason grades are added together and reported as Gleason 

score or Gleason sum. The higher the Gleason score, the higher chance of harbouring 

PCa tumours with potential to grow and spread quickly. 

PCa staging: PCa is also characterized based on how much cancer has spread 

within or beyond the prostate border; this is referred to as PCa staging. There is a strong 

relationship between PCa stage and the probability of curative treatment. The tumour-

node-metastasis (TNM) staging system presented by the American Joint Committee on 

Cancer is one of the most commonly used cancer staging methods worldwide [38]. It 

categorizes PCa into four main stages; taking the size of the tumour, the extent to which 

lymph nodes are involved, and the presence of metastases into account. Gleason grading 

of the tumour is also considered in the staging process. In stage I, cancer foci are usually 

microscopic and cannot be detected during DRE, the PSA level is lower than 10 ng/mL, 

and the Gleason score is less than or equal to 6. In this stage, cancer is usually detected 

through biopsy and few of the obtained samples are cancerous. In stage II, cancer is 

confined to the prostate gland and may be detected by DRE. In this stage, PSA could rise 

up to 20 ng/mL or higher. In stage III, the tumour has extended beyond the prostate 

capsule, but no regional lymph node metastasis or distant metastasis is detected. In stage 

IV, cancer has invaded adjacent tissues and organs. In this stage, metastasis in regional 
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lymph node(s) and/or other organs might be found [38]. Table 1.1 presents a brief and 

general overview of the TNM staging system for PCa. 

Table 1.1: Prostate cancer staging using the TNM system. This table is adapted and 

summarized from [38]. N0 means no regional lymph node metastasis and N1 means 

regional lymph node metastasis. M0 means no distant metastasis and M1 means 

metastasis in other organs beyond the prostate gland. 

Stage Tumour 

Regional 

lymph node 

metastasis 

Distant 

metastasis 

PSA level* 

(ng/mL) 

Gleason 

score* 

I 

Microscopic nonpalpable 

tumour confined to prostate 

capsule 

N0 M0 < 10 ≤ 6 

IIA 

Tumour confined to 

prostate capsule and 

involving 50% or less of 

one lobe 

N0 M0 <20 ≤ 7 

IIB 

Tumour confined to 

prostate capsule and 

involving either more than 

50% of one lobe, or both 

lobes 

N0 M0 any any 

III 
Tumour expansion beyond 

the prostate  
N0 M0 any any 

IV 

Tumour invasion of 

adjacent structures beyond 

the prostate 

N0/N1 M0/M1 any any 

* Where available 

1.3.5 Other diagnosis methods 

Medical imaging: Ultrasound imaging is one of the imaging methods currently 

performed as a clinical follow up method to the DRE and PSA blood tests to measure the 

prostate gland size, as well as the PCa tumour size, location and extent. Ultrasound 

imaging is also used for guidance of clinical procedures such as prostate biopsy or 

brachytherapy. 2D TRUS imaging is the most common method used for PCa diagnosis or 

guidance of some of the clinical procedures. Between 25% and 40% of PCa tumours have 
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been reported as isoechoic [39-41], meaning that they are not detected through ultrasound 

imaging. 

Bone scan: Bones are usually the first target of metastasis in prostate cancer. 

Therefore a bone scan or bone scintigraphy is usually used as a follow up test for high-

grade and/or high-stage PCa. The bone scan is a nuclear imaging method in which a low-

level radioactive material (called a radiotracer) is injected into a vein and this material is 

absorbed by bones. A gamma camera, which is a radiation-sensitive device, scans the 

body and detects the radiation emitted by the radiotracer. The more active the bone, the 

more radiotracer will be absorbed and detected by the camera. Some tumours, infections, 

bone abnormalities  and bone damage show up as sites of increased radiotracer uptake 

and are demonstrated as hot spot areas on imaging. The hot spots might suggest cancer 

metastasis to the bone or they might be detected because of some other bone 

abnormalities. 

1.3.6 Risk groups 

PCa patients are categorized into six different risk groups based on the initial 

clinical assessment: very low-, low-, intermediate-, high-, very high-risk, or metastatic 

cancer. These risk groups are used to choose the appropriate treatment option for the 

patients. If a patient’s risk group changes over a period of time, this is strongly suggestive 

of cancer progression and indicates radical treatments such as surgery or radiotherapy 

[42]. Table 1.2 shows the six risk factors and their characteristics. In the next subsection 

(1.3.7) we describe the clinical treatment plan that is suggested for each risk group. 
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1.3.7 Early diagnosis clinical workflow 

The National Comprehensive Cancer Network (NCCN) has published a guideline 

that suggests a clinical workflow for PCa diagnosis and treatment planning [42]. In this 

guideline for early detection of the PCa, initial risk assessment based on DRE and PSA is 

suggested. Biopsy is usually offered based on DRE and PSA results. For individuals of 

45 to 75 years of age with normal DRE and PSA level lower than 1 ng/mL, repeating 

DRE and PSA at 2-4 years intervals is suggested. If the PSA level is equal to or higher 

than 1ng/mL, or the individual’s age is above 75 years with a PSA level lower than 3 

ng/mL, DRE and PSA testing are offered every 1–2 years. For individuals with PSA level 

above 3.0 ng/mL, the NCCN guidline suggests workup for benign disease; i.e., either 

TRUS-guided biopsy or PSA and DRE testing every 6–12 months [43]. 

Table 1.2: Prostate cancer risk groups. This table is adapted from [44]. 

Risk group PCa extent Staging 
 Gleason 

score 

 PSA level 

(ng/mL) 

Very low 
Clinically 

localized 

Stage I 

≤ 5% tissue involvement 

< 3 positive biopsy cores  

(< 50% cancer in each)  

and ≤ 6 and < 10 

Low 
Clinically 

localized 

Stage I or II 

≤ 50% of one lobe is involved 
and 2 to 6 and < 10 

Intermediate 
Clinically 

localized 

Stage II 

> 50% of one lobe or both lobes are 

involved 

or 7  or 10-20 

High 
Clinically 

localized 

Stage III 

Extracapsular extension 
or 8-10 or > 20 

Very high 
Locally 

advanced 

Stage III or IV 

Seminal vesicle(s) invasion 
 any  any 

Metastatic Metastatic 
Regional lymph and/or distant 

metastasis 
 any  any 

 

For treatment planning, NCCN guidelines suggest a specific strategy for each risk 

group. The recommended strategies are usually based on the estimated life expectancy of 

the patient and PCa growth and progression over time. The suggested treatment options 
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could be selected from active surveillance (i.e. active monitoring of disease progression), 

radiotherapy (brachytherapy or external beam radiotherapy; EBRT) and surgery (radical 

prostatectomy with or without pelvic lymph node dissection). In some cases, androgen 

deprivation therapy or ADT is also recommended, usually combined with the radical 

treatments such as EBRT or radical prostatectomy [44]. 

1.4 Prostate cancer treatment 

1.4.1 Radical treatments 

Surgery: Currently, one of the clinical standard PCa treatments is to surgically 

remove the whole prostate gland and the attached seminal vesicles, also known as radical 

prostatectomy. This surgery is usually done for patients with clinically localized PCa that 

is progressive and aggressive. Some times the local lymph nodes are also removed during 

the same surgery [44]. Radical prostatectomy is sometimes followed by other treatment 

or monitoring options such as radiotherapy, chemotherapy, ADT or active surveillance to 

avoid the risk of PCa recurrence [45]. 

Since the prostate is surrounded by the sphincter urethrae muscle, as well as 

nerves and blood vessels that are critical for erections, and is attached to many organs 

such as rectum and bladder, radical prostatectomy can have severe side effects such as 

urinary incontinence and erectile dysfunction [46-48]. Prostatectomy has minimal post-

surgery bowel function-related symptoms [49]. The NCCN guidelines recommend radical 

prostatectomy for patients with 10 or more years of estimated life expectancy who do not 

have any serious health conditions that would contraindicate the surgery [44]. 

External beam radiation therapy: EBRT is another common radical treatment 

option for PCa, where ionizing radiation (e.g. X-ray) is generated and delivered to the 
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target by a computer-controlled linear accelerator (LINAC). The LINAC targets the 

prostate and directs the radiation from outside of the body at the prostate gland to kill the 

cancerous cells. Intensity modulated radiotherapy (IMRT) is one of the state-of-art 

radiathion therapy methods in radiation oncology used for PCa treatment. With IMRT, 

compared to traditional radiation therapy, oncologists can plan the radiation therapy with 

the aim of delivering a higher dose to the tumour and minimizing radiation exposure to 

the healthy surrounding tissues. For accurate radiation delivery to the target, prostate 

localization is performed by image-guided radiotherapy (IGRT) [44]. In IGRT, for each 

radiation delivery secssion the target is tracked by an intra-operative imaging system such 

as ultrasound imaging, X-ray imaging or cone-beam computed tomography (CT) to 

increase the accuracy of the targeting and compensate tissue movment. 

Prostate EBRT dose planning is usually done under CT image guidance because 

CT provides 3D anatomical localization of the pelvis and also provides the electron 

density information of the tissues that is required for radiation dose calculation. Radiation 

oncologists usually use inverse planning for radiation dose planning in IMRT. In inverse 

planning the oncologists first delineate the prostate border as well as the surfaces of all 

organs at risk in 3D. They then use advanced software to prioritize the dose delivery and 

limitations for the organs at risk and run the software to design the dose plan. The dose 

plan is used in a computer-controlled LINAC for radiation therapy delivery. 

The limitation with CT based planning is the low soft tissue contrast in CT 

images. Therefore, CT cannot provide accurate and repeatable contour delineation for the 

prostate and some of the surrounding organs at risk such as the rectum, bladder and 

NVBs [50, 51]. 
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In terms of health-related quality of life (HRQOL), in general, patients who 

undergo EBRT have less urinary incontinence but worse bowel function compared to 

prostatectomy patients [52, 53]. HRQOL improves over time post-treatment for PCa 

patients treated with EBRT [54]. EBRT also avoids surgery-associated risks and 

complications such as bleeding and transfusion-related risks, and anesthesia-associated 

side effects [44]. 

Brachytherapy: Brachytherapy, as an internal radiotherapy, is another radical 

treatment method usually used for lower-risk PCa cases [44]. In this method, radioactive 

sources are placed within the prostate tissue to kill the cancerous cells. Prostate 

brachytherapy is an outpatient procedure that is performed under either general or spinal 

anesthesia. The treatment is usually planned using ultrasound and/or MR imaging. The 

radioactive sources are usually placed in the prostate through transperineal insertion 

under the guidance of an imaging technique like TRUS [55]. 

Low dose-rate (LDR) and high dose-rate (HDR) brachytherapy are the two main 

types of brachytherapy treatment approaches for PCa. In HDR brachytherapy a catheter is 

inserted into the prostate and a high-dose radiation is delivered to the cancerous tissue. In 

LDR brachytherapy a number of small radioactive seeds are permanently implanted in 

the prostate gland to deliver low dose radiation to the tumour cells within a longer period 

of time compared to HDR brachytherapy. Brachytherapy as monotherapy is 

recommended to patients with low-risk PCa. For intermediate-risk PCa, brachytherapy is 

combined with EBRT with or without ADT. Brachytherapy rarely is a useful option for 

high-risk PCa treatment [44]. 
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Brachytherapy is usually performed within a day and the patient can return to 

normal activities in a short time [44]. Less erectile dysfunction is reported after 

brachytherapy compared to EBRT and prostatectomy [49]. The incidence of urinary 

continence is lower after brachytherapy compared to prostatectomy, and bowel 

dysfunction is comparable to EBRT [49, 52]. 

1.4.2 Lesion-directed treatments 

In a subset of prostate cancer patients with organ-confined cancer, PCa consists of 

a dominant high-grade tumour surrounded by primarily non-cancerous tissue. Therefore, 

a number of emerging therapy methods such as cryotherapy and high intensity focused 

ultrasound (HIFU) suggest preserving as much healthy parenchyma as possible and 

delivering the treatment to the tumour site [44]. In these local therapy methods (also 

known as focal therapies) the treatment is focused on the tumour cells to spare healthy 

tissues from destruction. This leads to minimally invasive treatments with fewer and less-

severe risks and side effects compared to radical treatments like prostatectomy and 

radiotherapy. 

1.5 Prostate cancer imaging 

There are many different imaging modalities that are being used for PCa 

diagnostic and therapeutic procedures. For each clinical procedure, the imaging modality 

to be utilitzed is chosen according to the features required for that type of procedure. 

Sometimes it is required or more effective to use combination of two or more imaging 

methods. Ultrasound, CT, MRI and positron emission tomography (PET) are the most 
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popular imaging modalities that are currently being used for PCa diagnosis or treatment 

in clinical procedures. 

1.5.1 Ultrasound imaging 

As is also mentioned in section 1.3.5, ultrasound imaging and more specifically 

TRUS imaging is the most common imaging modality used for PCa diagnosis and 

treatment. It is an inexpensive and safe imaging modality that is available in most clinical 

centres. In TRUS imaging, a transrectal ultrasound transducer is inserted into the rectum 

and acquires images from the prostate gland through the rectal wall. TRUS is capable of 

displaying the anatomy of the prostate and provides real time imaging with rates of up to 

30 frames per second. There are two types of TRUS probe available that provide different 

views; end-firing and side-firing probes. Both probe types are currently used in clinical 

procedures such as TRUS-guided biopsy but the preference of one over the other is still a 

matter of debate [56-59]. However, for prostate biopsy, end-firing probes are 

recommended because they provide greater freedom of biopsy plane manipulation and 

they enable better access to the peripheral zone, where PCa tumours are most likely to be 

found [57, 59]. Side-firing probes are mostly used in transperineal biopsy or 

brachytherapy. 

TRUS is one of the imaging modalities used for accurate estimation of the 

prostate gland volume [60]. It is also used for PCa detection and tumour volume 

estimation, however ultrasound imaging is not able to detect all prostate tumours; about 

25 to 40 percent of PCa tumours have been reported as isoechoic [39-41]. 



www.manaraa.com

19 

 

1.5.2 Computed tomography imaging 

CT is an imaging modality based on X-ray irradiation of the body from different 

angles and processing the acquired data by a computer to generate the images. CT 

provides each 3D image in the form of a set of cross-sectional images. The CT image 

intensities are directly correlated with the electron density of the tissues. This is an 

exclusive feature of CT imaging that is required for radiation dose calculation during the 

radiotherapy planning process. However, X-rays forms the CT images, image contrast is 

lower for soft tissues compared to the image contrast for hard tissues (e.g. bones). For 

prostate imaging, although CT imaging provides a useful 3D anatomical image of the 

pelvis, prostate contouring on CT images is challenging and subject to high inter-

observer variability compared to other imaging modalities such as ultrasound and MRI 

[9, 61, 62]. 

1.5.3 Magnetic resonance imaging 

MRI is known as a noninvasive medical imaging method. MRI uses a strong 

magnetic field (usually 0.5 to 3.0 Tesla) and radio frequency (RF) pulses (with frequency 

of ~42.5 MHz/Tesla) to generate the cross-sectional images of the body. MRI yields 

high-contrast, detailed images of soft tissues. However, for air and bone imaging the 

quality of MR images is poor, and additional techniques such as using contrast agents are 

required. 

MRI is capable of producing 3D images in the form of a set of cross-sectional 2D 

images. There are three orthogonal standard imaging planes defined in radiology to 

present cross-sectional views: the axial, sagittal, and coronal imaging planes. The axial 

plane (also known as the transverse plane) divides the body into superior and inferior 
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parts (Figure 1.5 (a)). The sagittal imaging plane (also known as the lateral plane) is 

perpendicular to the axial plane and divides body into left and right parts (Figure 1.5 (b)). 

The coronal imaging plane (also known as the frontal plane) is perpendicular to the axial 

and sagittal planes and divides the body into anterior (ventral) and posterior (dorsal) parts 

(Figure 1.5 (c)). 

  

Figure 1.5: Three standard imaging planes in radiology. (a) Axial plane, (b) sagittal 

plane, and (c) coronal plane. 

1.5.3.1 Prostate MRI 

Although MRI is not used as a clinical standard test for PCa [63-65], MRI has 

demonstrated its potential and important role as an imaging modality for PCa 

management [63-68]. Over the past two decades, in many centres MR imaging has been 
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used for PCa diagnosis, staging, treatment planning and therapy guidance [65-67, 69]. 

Most commonly, prostate MRI is performed at 1.5 or 3.0 Tesla magnetic field strength. In 

some centres, an ER coil and/or pelvic phased array coil (also known as a body coil) are 

used for prostate MRI to increase the signal-to-noise ratio (SNR) and improve the spatial 

resolution of the images [7, 70]. Although the optimal use of the ER coil for prostate MRI 

is still under study, there is some evidence of improvement in diagnosis and staging of 

PCa using ER MRI [7, 70, 71]. Figure 1.6 shows the same axial cross-section of the 

prostate on T2w MRI acquired with and without ER coil from the same patient. 

 

Figure 1.6: Axial view of T2w prostate MRI acquired (a) without, and (b) with ER coil. 

Both images are midgland slices of the same patient  

There are several different MR imaging pulse sequences available for prostate 

that form multiparametric MRI; e.g. T1-weighted MRI, T2w MRI, dynamic contrast 

enhanced (DCE) MRI, diffusion weighted imaging (DWI), and MR spectroscopy (MRS) 

[65]. 
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1.5.3.2 Multiparametric MRI 

T1- and T2-weighted MRI: T1- and T2-weighted MRI are both used for PCa 

detection [72]. T1-weighted MRI is also used for detection of hemorrhage after prostate 

biopsy [72]. The zonal anatomy of the prostate is appreciated better on T2w MRI 

compared to T1-weighted MRI, and therefore usually T2w MRI is used as a main 

imaging approach for anatomy description of the prostate and adjacent tissues [73-75]. In 

T2w MRI of the healthy prostate, the peripheral zone appears brighter than the central 

and transitional zones, which are mixed dark to semi-bright regions on the image [76]. In 

T2w MRI, a hypointense area within the peripheral zone is considered to be PCa unless a 

hyperintense area (i.e. usually associated with the post-biopsy hemorrhage) is observed at 

the same location on T1-weighted MRI [77]. However, in some cases, PCa is challenging 

to detect on T2w MRI, because PCa can occur within an isointense region or even a 

hyperintense area compared to the background [70]. Sensitivity and specificity for T2w 

MRI in PCa detection have been reported as 52% to 83%, and 46% to 83%, respectively 

[78]. 

Contouring of the prostate on MRI is used for localizing the prostate border with 

surrounding tissues to help clinicians deliver the treatment to the prostate gland, and more 

specifically, to the PCa tumour sites while preserving healthy surrounding tissues from 

harm. Due to its better anatomical definition, the contouring task is often performed on 

T2w MR images. Furthermore, T2w MRI is useful in assessing the PCa extent and its 

spread beyond the prostate border. Hence, prostate border localisation on this MRI 

sequence could be helpful to staging. 



www.manaraa.com

23 

 

Dynamic contrast enhanced MRI: For acquisition of DCE MRI, an MRI contrast 

agent is injected into the body and the changes in contrast agent uptake and washout by 

the prostate tissue are measured through acquisition of a time series of T1-weighted MR 

images. DCE MRI is useful for detecting, localising, and staging of PCa [79, 80]. It has 

shown high sensitivity and specificity for early detection of PCa [79]. 

Diffusion weighted imaging: DWI is another type of MRI in which the mobility of 

water molecules at the microscopic level is measured. DWI measures the apparent 

diffusion coefficient (ADC) value that reflects the water diffusion pattern in the tissue. 

The idea behind clinical DWI is that, in general, the water motion in healthy human body 

tissues with intact cell microstructures is oriented and anisotropic. In a pathological 

change in tissue these microstructures are destroyed, therefore, the pattern of water 

diffusion in the tissue is more isotropic [81]. DWI has a short acquisition time and 

usually provides high-contrast between PCa and normal tissue and is useful in PCa 

diagnosis. However, because of low SNR, the spatial resolution of DWI is low [82]. 

MR spectroscopy: MRS is used in combination with MRI to provide more 

information about tissue characteristics [83]. Similar to MRI, MRS is also based on the 

nuclear magnetic resonance phenomenon. It provides information about the metabolic 

activity of the prostate by measuring the quantities of some metabolites (e.g. choline, 

citrates, creatine and polyamines) within the prostate gland. The metabolite quantities or 

the ratio between them indicate different abnormalities of the prostate [82]. One of the 

most important metabolite change in PCa is related to the level of citrate [84]. 
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1.5.3.3 Endorectal receiver coil 

In MRI and MRS, the smaller the receiver RF coil and the closer the coil is 

located to the target, the lower the noise level. Body and ER coils are two common RF 

receiver coils that are used in prostate MRI to enhance the quality of MR images in terms 

of spatial resolution and SNR [70]. The most common ER coil  used in prostate MRI is 

an inflatable ER coil that consists of a probe with a inflatable latex cover, also called a 

balloon. The balloon is filled by either air, perfluorocarbon, or barium after insertion into 

rectum for better positioning and coverage, and less coil motion [85]. Typically, the 

inflated ER coil has a cylindrical shape with about 8.5 cm length and about 4.5 cm 

diameter after inflation [7, 70]. 

Despite improvement in image quality via the ER coil, the ER coil complicates 

some aspects of imaging. For example, the ER coil substantially displaces and deforms 

the prostate [7]. On average, it compresses the prostate gland about 15% 

anteroposteriorly, and expands it about 8% in the left-right direction [7]. In MRI-targeted 

image-guided procedures, MRI information is often combined with another imaging 

modality (such as intra-procedural TRUS). Therefore, the deformation of the prostate 

shape challenges image alignment between MRI and the other imaging modality. In 

EBRT, CT imaging (the standard imaging modality for dose calculation) is acquired with 

no prostate gland deformation and in TRUS-guided procedures, although the endorectal 

transducer is used, the shape of the transducer and the way it is located inside the rectum 

is different and therefore the prostate shape is deformed in a different way [7]. Another 

limitation related to the use of the ER coil is the presence of some image distortion and 

artifacts such as magnetic susceptibility, coil flare, and rectum movement artifacts [86]. 
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Figure 1.7 shows some types of imaging artifacts that occur on ER MRI. Some 

distortions, e.g. magnetic susceptibility, occur because of the air-inflated ER coil and can 

be reduced by replacing air with other ER coil balloon filling materials [85]. 

Furthermore, since the ER coil is placed posterior to the prostate, it generates an 

inhomogeneity in the received signal and, accordingly, in the image intensities [87]. In 

MRI, the voxel intensities are higher close to the coil. 

 

Figure 1.7: ER coil distortion on MRI [86]: (a) gland distortion, (b) near-field coil flare 

artifact, (c) coil-related artifact because of air-inflated balloon, and (d) rectal movement 

distortion. 

(a) (b)

(c) (d)
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Although the ER coil improves image quality overall and some studies have 

shown a positive impact of using ER coil on MRI-based PCa diagnosis [6, 69, 71, 88-90], 

the use of the ER coil for prostate MRI is still debated because the coil is not comfortable 

for the patients and generates image distortions. One study suggested that the ER coil 

does not significantly improve MRI power in diagnosis of PCa [86]. Another study [91] 

has shown that in terms of staging accuracy, non-ER 3.0 Tesla MRI is equivalent to ER 

1.5 Tesla MRI. 

1.5.4 Nuclear imaging 

Some types of nuclear imaging methods such as PET are also used for prostate 

imaging. PET scanning cannot provide accurate anatomical information; however, it can 

detect tumours based on the metabolic functionality of the tissues. Sometimes a 

combination of PET and another imaging modality such as CT (called PET/CT) is used to 

generate high-resolution anatomic images fused with functional images [92]. Since the 

metabolic glucose activity of PCa is low, fluorodeoxyglucose (FDG)-PET scanning is 

less useful for PCa diagnosis particularly in the early stages, but is usually used in 

metastasis detection [92]. There are studies that show the role of other radiotracers in 

PET imaging for early detection of PCa [93]. 

1.6 The role of MRI in diagnosis and treatment of prostate cancer 

1.6.1 MRI-targeted TRUS-guided biopsy 

Due to lack of visibility of many PCa tumours on TRUS, the standard TRUS-

guided prostate biopsy is usually performed based on a systematic sampling approach 

from different regions of the prostate gland [33]. About 35% of PCa is not detected 
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during the first attempt at TRUS-guided biopsy [36]. Since MRI yields improved ability 

for detecting and localizing of PCa [63-69], there are some recently developed biopsy 

systems that utilize MR images to define biopsy targets, and map those targets to the real-

time intra-operative TRUS images to help clinicians direct the biopsy needles to the pre-

defined suspicious regions. It has been shown that this has increased the detection rate of 

biopsy and decreased the rate of repeat biopsy [94-96]. 

1.6.2 MRI-CT fusion radiotherapy planning 

The CT scan is very important for dose calculation in radiation therapy planning 

because it provides the electron density distribution of body tissues as well as useful 

anatomical information. For dose planning, it is also important to identify the boundaries 

of the prostate and surrounding sensitive tissues and organs. Since the soft tissue contrast 

on CT images is lower than on MRI, contouring the prostate on CT could result in lower 

accuracy and higher intra- and inter-observer variability [9, 50]. It is also nearly 

impossible to detect or localize prostate tumours in CT images. One way to account for 

inter-observer variability in radiotherapy planning is to use an expanded safety margin 

around the boundary, but this can cause undesirable irradiation of surrounding healthy 

tissues. Another way is to improve the accuracy and consistency of the border delineation 

using MR imaging. However, in MRI, there is not a unique correspondence between 

pixel intensity and electron density. Poor imaging of bones and image distortions are the 

other disadvantages of using MRI for dose planning. To address these challenges, one 

approach is to use MRI-to-CT image fusion that enables using MRI-based delineated 

borders on CT images for radiotherapy planning. It has been shown in the literature that 

using MRI guidance for prostate EBRT planning could increase the accuracy and 
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repeatability of the planning [62, 97, 98]. There are also studies on MRI-only 

radiotherapy planning methods in which CT imaging has been omitted [99]. To estimate 

the electron density information of the tissues, the MR image is segmented and different 

values are assigned to different regions based on the characteristics of the tissues. The 

MRI-only methods overcome the image registration and fusion errors. However, the 

accuracy of dosimetry is affected due to lack of accurate electron density information 

within the tissues. 

1.6.3 MRI-guided biopsy and focal therapy 

The increasing potential of MRI for diagnosis, localisation, and staging of PCa 

has driven the development of diagnostic and therapeutic devices that are compatible 

with the MRI magnetic field and imaging approach and can be used inside the MRI bore. 

MRI-guided biopsy [75] and MRI-guided focal therapy [100] are two examples of MRI-

guided procedures in which MRI-compatible devices are used. In these procedures, the 

traditional intra-procedure imaging modality is replaced by MRI to increase the accuracy 

of the procedures by avoiding image fusion and registration errors. This comes with the 

compromise of increased cost of the procedure and awkward patient positioning issues 

due to the confines of the MRI bore. 

1.7 Prostate contouring on MRI 

Delineation of the prostate gland on MRI plays an important role in some 

diagnostic and therapeutic procedures. It helps to define the anatomy of the organ and to 

measure its volume. Measurement of the volume is useful for diagnosis and treatment 

planning. For example, the PSA level is usually interpreted in the context of prostate 
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volume [101]. Contouring of the prostate on MRI could be also helpful either in planning 

and delivering an MRI-guided therapy, or in the fusion of MR images to other imaging 

modalities (e.g. CT or ultrasound) for running an MRI-targeted image-guided process. 

However, there are uncertainties and challenges around manual contouring of the 

prostate on MRI, described below. 

1.7.1 Challenges in manual prostate contouring in MRI 

Accuracy and reproducibility: The prostate is a soft tissue organ that is 

surrounded by other soft tissue structures such as the bladder, seminal vesicles, muscles, 

NVBs, and penile bulb. It has been shown using histology that the prostate is not a fully 

encapsulated gland, and the adjacent tissues in some parts are blended with the 

periprostatic tissues [102]. Thus, for some portions of the prostate, there does not exist a 

discrete, “true” boundary, even when viewed under the microscope. This poses 

challenges to prostate boundary delineation on medical imaging, rendering manual 

contouring a challenging task that is subject to relatively high intra- and inter-observer 

variability [9, 103]. This variability is even higher within some parts of the prostate such 

as base and apex regions [103]. This contouring variability could potentially influence the 

outcomes of clinical procedures, and also could cause a lack of performance consistency 

of a similar procedure between different clinical centres in multi-centre trials [1]. 

Therefore, any approach that helps to reduce this variability and improve the 

reproducibility of the task could be helpful from clinical point of view.  

Timing: Contouring time is another issue with manual contouring of the prostate 

on MRI. There are several reports that report manual prostate contouring times, with the 
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average contouring time for the whole prostate in 3D varying between five minutes [10] 

up to approximately 20 minutes [11]. 

1.7.2 Computer-assisted prostate segmentation on MRI  

In some clinical applications, computer-assisted contouring of the images (also 

called image segmentation) can provide more accurate and reproducible results in a 

shorter time. Segmentation is an image processing method in which the image usually is 

divided into two non-overlapped homogeneous regions with respect to some image 

characteristics such as intensity or texture [104]. One region is the region of interest 

(ROI) or object and the other is the background. 

There are different types of approaches available for image segmentation in 

medical imaging. Segmentation algorithms work based on the features that are extracted 

from the image; e.g. image intensities, textures, intensity gradients or edges [105]. Some 

methods like thresholding and pixel clustering are based on pixel classificaltion and some 

others could be based on edge, boundary or shape detection. Sometimes a combination of 

multiple image-derived features is used to segment an image. There is also a group of 

segmentation methods that segment an image based on prior knowledge about image 

structure and characteristics obtained from a training image set. 

Segmentation algorithms are usually designed or modified to optimize the result 

for specific applications. There are several presented image segmentation algorithms 

available in the literature for prostate segmentation in MRI, as described in a recent 

survey [106]. These algorithms have been developed to make the image contouring either 

faster, more accurate and/or more repeatable. 
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1.7.2.1 User interaction 

There are two types of segmentation algorithm; semi-automatic and automatic. In 

semi-automatic segmentation, some operator interaction is required. Interaction allows 

for incorporation of the operator’s domain knowledge into the process of the image 

segmentation. Usually, operator interaction improves the accuracyof the algorithm and 

makes the algorithm more robust, but it could make the algorithm laborious and time-

consuming  to use. In automatic segmentation, the computer segments the image with no 

operator interaction required. However, automatic segmentation algorithms usually 

require parameter tuning by a user for initialization [104]. 

1.7.2.2 Prostate MRI segmentation challenges 

As explained earlier, using the ER coil improves MR image quality from a 

clinical point of view, but can render computer-assisted segmentation more challenging 

due to the higher contrast within the prostate that reveals many details and edges that are 

not pertinent to the prostate boundary itself. Segmentation on ER MRI is also challenged 

by intensity inhomogeneity artifacts [85] and other artifacts as described in subsection 

1.5.3.3. Thus, prostate segmentation on ER MRI is a substantially different problem, 

compared to prostate segmentation on MRI acquired with a body coil. 

1.7.2.3 Prostate ER MRI segmentation techniques 

There are several techniques have been presented in the literature for 

segmentation of the prostate on T2w MRI acquired with an ER coil. Martin et al. [13] 

presented a semi-automatic atlas-based method using intensity information combined 

with few landmarks to register an atlas to a test image. They evaluated their algorithm 

within different ROIs, including the midgland, base and apex, using a distance-based 
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error metric, and for the whole gland using region-based metrics. They reported some 

difficulties using atlas registration for small prostates with volume less than 25 cm3 that 

resulted in higher segmentation errors. Vikal et al. [14] utilized shape modeling for a 

slice-by-slice 3D segmentation of the prostate on T2w MRI. Their semi-automatic 

method needed one centre point for initialisation and each slice segmentation was used as 

the initialisation for the segmentation of the next slice. They evaluated their method on 

three T2w ER MR images acquired at 3.0 Tesla using the MAD and DSC metrics to 

measure performance. Toth and Madabhushi [15] presented a semi-automatic 

segmentation method using a landmark-free active appearance model. They used a level 

set-based shape representation for their method. The method has been evaluated using the 

MAD and DSC error metrics selectively for different ROIs. Liao et al. [16] presented a 

hierarchical automatic segmentation using a multi-atlas-based method for coarse 

segmentation of the target image followed by a semisupervised regularization for the 

final fine segmentation. They evaluated their method on 66 T2w MR images using MAD, 

DSC, and Hausdorff distance (HD) metrics for the whole gland. Cheng et al. [107] 

presented an automatic atlas-based approach for T2w prostate MRI segmentation. Their 

algorithm is a slice-by-slice segmentation in which first an adaptive active appearance 

model is used to provide an initial coarse segmentation and then a support vector 

machine-based approach is used to refine the segmentation. Their evaluated their method 

using region based metrics on the whole gland.  

In 2012, the Medical Image Computing and Computer Assisted Intervention 

(MICCAI) conference held a prostate MR image segmentation (PROMISE12) challenge 

in which 11 teams were involved. The challenge evaluated the prostate T2w algorithms 
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presented by the teams and compared their performance in two parts; an online challenge 

and a live challenge. The data set contained both ER and non-ER MR images. DSC, 

MAD, 95% HD, and the percentage of the relative volume difference metrics were used 

to evaluate the algorithms. The metrics were applied to the whole gland, as well as the 

base and apex regions separately. PROMISE12 is a valuable study that measured and 

compared the segmentation errors of different state-of-the-art methods using the same 

data set to test and a single reference to evaluate [108]. 

Alvarez et al. [109] presented an automatic segmentation method for T2w 

prostate and tested their algorithm on 50 images from the PROMISE12 data set, 

including 24 ER MR images. In their method, for each test image a subset of similar 

training images are selected using a multi-scale analysis, and then the segmentation labels 

from the training images are registered to the test image and locally combined using a 

patch-based approach. Their results were sensitive to the number of atlases used and the 

size of the patches. They used the DSC measured on the whole gland to evaluate their 

method against a manual reference segmentation. Table 1.3 provides a high-level 

comparison of all of these approaches. 

Table 1.3 gives a brief overview on all the mentioned segmentation methods. 

Although there are several segmentation algorithms available in the literature for which 

the segmentation accuracy is asymptotically approaching the observed range of 

differences between experts in manual segmentation, there remain some important 

limitations. For example, for some of the techniques the complexity of the algorithms is 

high. This complexity resulted in longer computational time ([15, 16]) compared to the 

methods with less complexity, but did not make a meaningful difference in segmentation 
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accuracy. Furthermore, some methods are not readily amenable to speed-up through 

parallel computing implementation.  

1.7.3 Validation challenges 

1.7.3.1 Lack of gold standard 

The high inter-observer variability in manual contouring of the prostate MRI 

challenges the preparation a single gold-standard reference segmentation for each image. 

The absence of a reference to define the true extent of an object makes it difficult to 

validate the absolute accuracy of the contouring results [1]. The use of a single observer’s 

manual contours as a reference standard thus complicates the interpretation of the results. 

Where different observers’ reference standard segmentations were used in different 

studies, this poses a challenge to comparing different algorithms since differing results 

could be attributed to inter-observer variability in manual contouring rather than in true 

differences between algorithm performance. Combining a set of different contours from a 

group of experts as a consensus of opinion to make one reference standard is an approach 

to mitigate this issue and simplify validation. Simultaneous truth and performance level 

estimation (STAPLE) [110] is one of the most common approaches for combining a set 

of segmentation using a weighted voting scheme. 
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Table 1.3: A survey of prostate MRI segmentation algorithms. 

Authors Techniques 

Field 

strength 

(Tesla) 

ER 

coil 

Validation 

regions 

Validation 

metrics 

Data set 

size 

Number 

of 

references 

Martin et al. [13] Atlas-based X yes 

WG, A, MG, B MAD 

18 one 
WG 

Recall, 

Precision 

Vikal et al. [14] 
Shape modeling 

(slice-by-slice) 
3.0 yes A, MG, B MAD, DSC 3 

one based 

on two 

experts’s 

agreement 

Toth and 

Madabhushi [15] 

Landmark-free 

active appearance 

model 

3.0 yes 

WG, A, MG, B DSC 

108 

one for 108 

images and 

two for a 

subset of 

17 images 

WG MAD, DSC 

Liao et al. [16] Multi-atlas-based X X WG 
MAD, DSC, 

HD 

66 (test) 

9 (atlas) 
one 

Cheng et al. [107] Atlas-based 3.0 X WG 
TP, FN, FP, 

DSC, ΔV% 

100 

(training) 

40 (test) 

one 

Alvarez et al. [109] Atlas-based X 
24 out 

of 50 
WG DSC 50 one 

WG: whole gland, A: apex, MG: mid-gland, B: base 

1.7.3.2 Lack of a standard validation methodology 

Despite the lack of a straightforward gold standard, computer-assisted 

segmentation algorithms require validation to support clinical translation. This evaluation 

needs (1) a set of error metrics that are sensitive to different, clinically relevant types of 

contouring errors and (2) a method for evaluation of the contouring in different anatomic 

regions of interest within the prostate. The validation approach must take inter-observer 

variability in manual reference contours into account. To the best of our knowledge, there 

is no accepted standard set of error metrics use for evaluation of prostate contouring on 

medical imaging. Currently, most research groups have used one or two error metrics, 

and these choices have not generally been connected to any specific clinical procedures 

[1]. There are several classes of error metrics that have been used. In one class of metrics, 

the distances between corresponding points on the automatic and reference segmentations 
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are calculated and aggregated (e.g. the MAD). In another class of metrics, the overlap 

region of two shapes or volumes is measured in various ways (e.g. the DSC). However, 

each metric is able to detect one or few types of errors but not all different types of errors; 

e.g. local surface misalignment, partial regional overlap, and volume difference. 

Therefore, comprehensive segmentation algorithm evaluation requires a set of 

complementary error metrics that covers the range of errors types that are relevant to 

clinical procedures of interest. 

Furthermore, since the contouring is generally more challenging to perform (for 

both manual and automatic methods) at the inferior (apex) and superior (base) ends of the 

prostate, as compared to the midgland region, reporting the overall segmentation error for 

the whole prostate gland does not provide enough information about the local accuracy of 

the segmentation method under evaluation. Large errors in the base and apex can be 

compensated by small errors in the midgland, with an apparently favourable overall error 

reported that is discordant with large errors in the apex and base. Measuring segmentation 

errors separately within these different anatomic regions mitigates this issue. This helps 

the clinician to evaluate the readiness of an algorithm for clinical translation. 

1.8 Hypothesis 

The central hypothesis of this thesis is as follows: computer-assisted 3D prostate 

segmentation on T2w ER MRI will (1) decrease the time required for an expert physician 

to achieve a clinically acceptable segmentation, and (2) reduce inter-observer variability 

in segmentation, as compared to manual segmentation. 
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1.9 Objectives 

To test the central hypothesis, the three major objectives of this thesis are: 

I. (Chapter 2) To develop a semi-automatic prostate  segmentation 

algorithm for T2w prostate ER MRI, and evaluate it against multi-observer manual 

reference standard segmentations. 

II. (Chapter 3) To develop and evaluate a fully automated prostate  

segmentation algorithm for T2w prostate ER MRI, and evaluate it against multi-observer 

manual reference standard segmentation. 

III. (Chapter 4) To measure the inter-observer variability and total 

segmentation time resulting from the use of the semi-automatic (Objective I) and 

automatic (Objective II) segmentation methods, followed by expert manual editing to 

yield clinically acceptable segmentations. 

1.10 Thesis outline 

1.10.1 Chapter 2 - Spatially varying accuracy and reproducibility of prostate 

segmentation in magnetic resonance images using manual and semi-

automated methods 

The purpose of this work was to develop an approach for evaluation of a semi-

automatic prostate segmentation algorithm for T2w MRI acquired with an ER coil and 

compare it to manual segmentation in terms of accuracy and repeatability within the 

whole gland, and separately within the apex, mid-gland, and base regions. We collected 

MR images from 42 prostate cancer patients. The prostate border was delineated 

manually by one observer on all images and by two other observers on a subset of 10 
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images. We used complementary boundary-, region-, and volume-based metrics to 

elucidate the different types of segmentation errors that we observed. Compared to 

manual segmentation, our semi-automatic approach reduced the necessary user 

interaction by only requiring an indication of the anteroposterior orientation of the 

prostate and the selection of prostate center points on the apex, base, and midgland slices. 

Based on these inputs, the algorithm identified the prostate boundary using learned 

boundary appearance characteristics and performed regularization based on learned 

prostate shape information.  

In contrast with the active appearance model, our segmentation algorithm was 

based on local appearance characteristics. Furthermore, our algorithm optimized the 

segmentation first based on the appearance features and then further optimized based on 

shape features, rendering it more amenable to parallel computing implementation.  

The algorithm required an average of 30 seconds of user interaction time for each 

3D segmentation. Comparing the semi-automatic segmentations against a single-operator 

manual segmentation, the results of this chapter showed a MAD of 2.0 mm, DSC of 82%, 

recall of 77%, precision of 88%, and ΔV of = −4.6 cm3 for the whole gland on average. 

We found that overall, midgland segmentation was more accurate and repeatable than the 

segmentation of the apex and base, with the base posing the greatest challenge. The semi-

automatic approach reduced interobserver segmentation variability. Its accuracy, as well 

as the accuracies of recently published methods from other groups, were within the range 

of observed expert variability in manual segmentation. Further efforts in the development 

of computer-assisted segmentation would be most productive if focused on improvement 

of segmentation accuracy and reduction of variability within the prostatic apex and base. 
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1.10.2 Chapter 3 - Accuracy and acceptability of an automated method for 

prostate segmentation in magnetic resonance imaging 

In this chapter, we developed a fully automatic segmentation algorithm and 

evaluated its accuracy within different regions of interest (i.e. whole gland, apex, 

midgland, and base regions) using a complementary set of error metrics. We compared it 

to the semi-automatic approach (Chapter 2) and the inter-observer variability in manual 

segmentation. We used the same data set used in Chapter 2. In our automatic approach, 

we coarsely localized the prostate in the image using the prior measured dimensions of 

the gland that are readily available from the clinical TRUS examination before MRI 

acquisition. This localization is used to define the search space and to initialize the 

segmentation algorithm. Consequently, no user interaction is required for running the 

algorithm. 

We evaluated the algorithm using a set of region- bouandary- and volume-based 

metrics; i.e., MAD, DSC,  recall, precision and ΔV. We compared the accuracy of the 

automatic segmentation approach to the semi-automatic approach. We also compared the 

accuracy of both computer-assisted approaches to the range of inter-observer variation in 

manual segmentation. 

The automatic algorithm needed less than a minute to segment the prostate in 3D. 

Comparing the segmentation results to single-observer manual segmentation, for the 

whole gland we measured a MAD of 3.2 mm, DSC of 71%, recall of 69%, precision of 

76%, and ΔV of -3.6 cm3. In a multi-observer study, we measured a MAD of 3 mm, DSC 

of 72%, recall of 74%, precision of 74%, and ΔV of -0.3 cm3, whereas the difference 

between two observers’ manual segmentations were as high as MAD of 2.8 mm, DSC of 
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74%, recall of 87%, precision of 60%, and |ΔV| of 18.3 cm3. The results of the 

comparison of semi-automatic and automatic segmentation algorithm performance were 

mixed.  Overall, the previously presented semi-automatic approach outperformed the 

automatic approach in terms of most of the metrics within some of prostatic regions. 

However, there were some metrics such as recall and ΔV that revealed superior 

performance from the automatic approach on some prostatic regions, compared to semi-

automatic segmentation. 

The results of this chapter show that (1) concordant with results from other 

published algorithms, accuracy was highest in the mid-gland and lower in the apex and 

base regions of the prostate, (2) the fully automatic approach requires no user interaction 

and needs 3 seconds of computation time, (3) the differences between the automatic and 

semi-automatic segmentation error metrics were consistently smaller than the differences 

observed between manual contours performed by expert observers, (4) The segmentation 

error metric values were near to or within the range of expert manual segmentation 

variability for most of the metrics at most of the prostatic regions.  

1.10.3 Chapter 4 - Impact of physician editing on repeatability and time for 

manual and computer-assisted prostate segmentation on magnetic resonance 

imaging 

Segmentation of the prostate gland on T2w MRI is an important part of several 

diagnostic and therapeutic procedures for PCa. Since manual segmentation is time-

consuming and subject to high inter-expert operator variability, it has been widely 

recognized that these clinical procedures could benefit from a rapid and repeatable 

computer-assisted prostate segmentation technique. Many such algorithms have been 
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proposed in the literature [13-16, 107, 109], usually evaluated against manual reference 

segmentations performed by a single operator, with reported error metric values for 

recently published methods asymptotically approaching inter-operator variability in 

manual segmentation. Despite the tremendous volume of work performed in this area, the 

translation of computer-assisted segmentation algorithms to clinical care is rare, and 

manual segmentation is still routinely performed in clinic. As a step toward addressing 

this issue, in this chapter we focused on measuring the suitability of computer-assisted 

segmentation algorithms for clinical translation, based on measurements of inter-operator 

segmentation variability (which contributes to consistency of patient care) and 

measurements of the segmentation editing time required to yield clinically acceptable 

segmentations (which contributes to physician affinity to uptake of new segmentation 

tools, and patient throughput). We performed a pilot study with five expert operators 

under three pre- and post-editing conditions: manual segmentation, semi-automatic 

segmentation, and fully automatic segmentation. As expected, the results of this chapter 

showed that the amount of editing performed by the operators was directly related to the 

amount of automation involved in producing the starting segmentations. The provision of 

a starting segmentation using computer-assisted techniques reduced editing time and 

post-editing inter-operator variability, compared to manual segmentation. The amount of 

editing time was not correlated with the values of typically used segmentation error 

metrics such as the MAD between boundaries or the DSC, implying that the necessary 

post-segmentation editing time needs to be measured directly for multiple operators in 

order to evaluate an algorithm’s suitability for clinical translation. 
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Chapter 5 will conclude with a summary of the advances in knowledge stemming 

from this thesis work. This chapter also discusses the practical applications of this work 

and potential directions for future research. 
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Chapter 2. 

  

Spatially varying accuracy and reproducibility of 

prostate segmentation in magnetic resonance images 

using manual and semi-automated methods † 

 

2.1 Introduction 

PCa is the most common non-cutaneous cancer and was the second leading cause 

of cancer death among North American men in 2012 [1]. Three-dimensional (3D) 

prostate segmentation in medical images is useful to the planning of diagnosis and 

therapy procedures [2, 3]. Recent developments in magnetic resonance imaging (MRI) 

have demonstrated its usefulness for PCa detection and staging[4-6] with T2 weighted 

(T2w) MRI most commonly used for prostate boundary delineation due to its superior 

anatomic visualization [6]. Endorectal (ER) coil imaging provides improved image 

quality[4, 5, 7], but this coil induces substantial tissue deformation [8, 9] and the resulting 

higher contrast images contain more details and edges, presenting an increased challenge 

to segmentation algorithms designed for use on non-ER coil imaging. Manual 

segmentation of the prostate on MRI is a time-consuming task and is subject to 

                                                 
†A version of this chapter has been published: M. Shahedi, D. W. Cool, C. Romagnoli, G. S. Bauman, M. 

Bastian-Jordan, E. Gibson, G. Rodrigues, B. Ahmad, M. Lock, A. Fenster, A. D. Ward, “Spatially varying 

accuracy and reproducibility of prostate segmentation in magnetic resonance images using manual and 

semiautomated methods.” Medical Physics 41:11 (2014). 
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substantial inter-observer variation [10], motivating the need for a fast and reproducible 

segmentation algorithm for 3D segmentation of the prostate on T2W ER MRI. 

Several methods have been published in the literature for 3D segmentation of the 

prostate on T2W ER MRI. Martin et al. [11] presented a semi-automatic method based on 

the registration of an atlas to a test image using a combination of intensity-based and 

landmark-based methods, and evaluated it within different regions of interest including 

mid-gland, base and apex using a distance-based metric. They also used region-based 

evaluation for the whole gland. Vikal et al. [12] presented a semi-automatic slice-by-slice 

3D method using a shape model, evaluated on 3 images using the mean absolute distance 

(MAD) and Dice similarity coefficient [13] (DSC). Toth et al. [14] used a semi-automatic 

multi-feature landmark-free active appearance model, and selectively used the MAD and 

DSC for evaluation of different anatomic regions. Liao et al. [15]  presented an automatic 

multi-atlas-based segmentation method followed by a semi-supervised regularization. 

They evaluated their method using DSC, MAD and Hausdorff distance metrics on the 

whole gland. In 2012, a prostate MR image segmentation (PROMISE12) challenge was 

held as part of the Medical Image Computing and Computer Assisted Intervention 

(MICCAI) conference and involved 11 teams. This challenge compared the performance 

of the teams’ submitted prostate T2W MRI segmentation algorithms. It consisted of two 

main parts: an online challenge and a live challenge. The image data set in the challenge 

contained both ER and non-ER MR images, some acquired at 1.5 Tesla and some at 3.0 

Tesla magnetic field strengths. Four experts each manually segmented 25 images out of 

100 (i.e. each image was segmented by one expert and not more than one expert 

segmented each image). Next, an additional expert reviewed all the manual 
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segmentations and edited them for consistency as deemed necessary, yielding a single 

manual reference segmentation for accuracy measurement in each of the 100 cases (a 

second manual segmentation by an inexperienced non-clinical observer with two years’ 

experience in prostate MRI research was used for a ranking score calculation based on 

the error metrics, but was not used in any inter-operator variability measurements). The 

algorithms’ segmentations were compared with the manual reference using DSC, MAD, 

95% Hausdorff distance, and the percentage of the relative volume difference as the 

metrics. These metrics were reported on the whole gland, as well as the base and apex 

regions separately. The results of the live challenge on 20 images showed a range of  2.0 

mm to 4.2 mm for MAD, 65% to 89% for DSC, and 1.5% to 43.1% for absolute relative 

volume difference on whole gland [16].  

The PROMISE study measured the performance of different segmentation 

methods on the same set of images with the same manual reference. By holding the 

images and reference segmentations constant and measuring the performance of different 

algorithms, this study provided highly valuable measurements of variability in 

segmentation errors arising from the use of different state-of-the-art algorithms. By 

contrast, our study holds the algorithm constant (i.e. we tested a single algorithm) and 

used a reference standard based on multiple operators, addressing the question of the 

accuracy and variability of a segmentation algorithm’s results compared to inter-operator 

variability in the manual segmentation, such as one could observe in routine clinical 

practice. Thus, our study and the PROMISE study achieved complementary aims; in the 

future, a grand challenge-style study comparing different segmentation algorithms against 

a multiple-operator reference standard would be highly valuable. 
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In all of the reviewed published studies, the segmentation results were evaluated 

by comparison to a single-observer reference, with the inter-operator variability in 

manual segmentation and its effect on accuracy measurement not measured or taken into 

account in interpreting the segmentation results. In these studies, the accuracy was 

usually measured using one or at most two types of error metrics and none used a 

complementary set of error metrics capturing different types of errors such as 

surface/boundary misalignments, regional overlap errors, and volume differences. The 

use of a complementary set of error metrics is supportive of a comprehensive 

segmentation accuracy measurement, permitting the end user to focus on the metrics 

capturing performance aspects of importance to the user’s intended application of the 

technique. In addition, several previous studies report on segmentation accuracy only for 

the prostate gland as a whole, without reporting on spatial variations in the error through 

gland sub regions such as the apex, mid-gland and base. It is well-known that for both 

human experts and contemporary algorithms, mid-gland segmentation is usually 

performed with lower error and variability compared to segmentation of the apex and 

base, which are considered to be more challenging tasks. Thus, reporting of segmentation 

error on a whole-gland basis alone challenges the interpretation of the segmentation 

results in the interventional context, where accurate apex and base segmentations are 

critical to sparing harm to surrounding critical structures. 

To address the need for a 3D method, fully evaluated using a comprehensive set 

of metrics, we present here an interactive algorithm for 3D prostate segmentation on 

T2W ER MRI, based on learned local appearance of the prostate border and learned 

variability of prostate shape. We used a set of complementary boundary-based, overlap-
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based, and volume-based metrics to evaluate the segmentation over the whole gland and 

separately within each anatomic region of interest (prostate apex, mid-gland, and base). 

The method has two main steps, training and segmentation. During training, we captured 

the local image appearance of the prostate at the boundary on cross-sections from 

superior to inferior by computing a set of circular mean intensity image patches on each 

slice. The prostate shape variability on each axial slice was measured using a point 

distribution model (PDM) [17]. The segmentation algorithm requires minimal user input 

to initialize a radial-based search for candidate boundary points that are regularized using 

the PDM to produce the final result. The algorithm segmentations were validated against 

manual segmentations using complementary boundary-based (MAD), regional overlap 

(DSC, recall rate, and precision rate) and volume difference (ΔV) metrics, and inter-

operator variability was measured.  

2.2 Materials and Methods 

2.2.1 Materials  

We used 42 axial T2W fast spin echo ER MR images acquired as follows: 23 

images with TR = 4000–13000 msec, TE = 156–164 msec, NEX = 2 and 19 images with 

TR = 3500–7320 msec, TE = 102–116 msec, NEX = 1–2. Some images were acquired at 

1.5 Tesla (9 images) and some at 3.0 Tesla (33 images), with voxel sizes from 

0.27×0.27×2.2 mm to 0.44×0.44×6 mm (covering a range of voxel sizes typically seen in 

clinical prostate MRI). The images were acquired using four different scanners: Signa 

Excite, Discovery MR 750 (General Electric Healthcare, Waukesha, WI, USA), 

MAGNETOM Avanto, and MAGNETOM Verio (Siemens Medical Solutions, Malvern, 

PA, USA). All of the images were acquired from patients diagnosed with PCa based on 
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needle biopsy. The study was approved by the research ethics board of our institution, 

and written informed consent was obtained from all patients prior to enrolment. Each of 

the 42 images was segmented manually by one observer, with the segmentation 

subsequently reviewed and adjusted as deemed necessary by an expert radiology resident 

with experience in reading >100 prostate MRI cases. The initial manual segmentations 

were performed either by a radiologist or by a graduate student under the advisement of a 

radiologist. For inter-operator comparison, two additional observers (a radiologist and a 

radiation oncologist) each performed manual segmentations on a subset of 10 images to 

provide a total of three independent manual segmentations per patient. To select this 

subset of 10 images, we qualitatively assigned easy-, moderate- and difficult-to-segment 

labels to a set of images acquired at our institution, and randomly selected 10 images 

from all three categories. The prostate volumes were calculated based on the available 

manual segmentations for the whole image set and ranged from 15 cm3 to 89 cm3 with 

mean ± standard deviation (SD) of 35±14 cm3. 

2.2.2 Semi-automated segmentation  

Our algorithm consists of two main parts: training and segmentation. Figure 2.1 

shows the algorithm’s block diagram, illustrating the training and segmentation 

components, described in detail in sections 2.2.2.1 and 2.2.2.2 below. 

2.2.2.1 Training 

2.2.2.1.1 Spatial normalization. As a spatial normalization step, we parameterized the 

slice locations in the training images according to slices identified by the operator at 

specific anatomic locations. Our inferior-superior parameterization was from 0 (apex) to 
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1 (base) and was used to define inter-subject axial slice correspondence. Therefore, for 

each (𝑥, 𝑦, 𝑧) point in the MR Cartesian space, we have an (𝑥, 𝑦, 𝑧̂) point in the 

normalized coordinate system, where 𝑧̂ is a real unitless value in the range of [0,1]. We 

map 𝑧̂ values to corresponding slice numbers in the MR space by using a nearest 

neighbor inter-slice interpolation. We also chose the smallest physical pixel size along x- 

and y-axes (0.273 mm × 0.273 mm) in the data set as the reference pixel size and 

resampled all the training images with different pixel sizes to that reference pixel size, 

using bicubic interpolation. 

  

Figure 2.1: Algorithm block diagram. The training images are manually delineated. The 

candidate boundary points are shown on the test image after “border delineation” step. 

The final segmentation result is shown on the test image after the “3D regularization” 

step. 

2.2.2.1.2 Prostate border landmark selection. For each training image slice, we manually 

defined 4 corresponding landmark points on the prostate border: the anterior-most point, 

the opposite posterior point on the rectal wall, and two points approximately the 

midpoints of the portions of the prostate boundary touching the neurovascular bundles 
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(NVBs); see Figure 2.2. We used equal angle interpolation between each neighboring 

landmark pair, using the mid-point of the line segment defined by anterior and posterior 

landmarks as the central point, to define 32 additional landmarks, for a total of 36. For a 

slice with a parameterized axial position of 𝑧̂, the 𝑖th landmark is 𝒍𝑖,𝑧̂ = (𝑥𝑖,𝑧̂, 𝑦𝑖,𝑧̂, 𝑧̂) and 

𝑖 ∈ {1,2, … ,36}. 𝑥𝑖,𝑧̂ and 𝑦𝑖,𝑧̂ are the x- and y-coordinates of the 𝑖th landmark on the slice. 

We observed that in general, the anterior and NVB landmarks are separated by ~120 

degrees, and the NVB and posterior landmarks are separated by ~60 degrees. We 

therefore interpolated ~2/3 of the 32 additional landmarks between the NVB and anterior 

landmarks (11 interpolated landmarks on the left and right), and ~1/3 of the 32 additional 

landmarks between the NVB and posterior landmarks (5 interpolated landmarks on the 

left and right), as shown in Figure 2.2. 

2.2.2.1.3 Image patch. A circular image patch 𝒑(𝑚), centered at (𝑥𝜙, 𝑦𝜙, 𝑧̂) on the slice 

at axial position 𝑧̂, is defined as a vector of 𝑀 consistently ordered image intensities 

 𝒑 = Φ(𝑥𝜙, 𝑦𝜙, 𝑧̂) = {𝐼(𝑥, 𝑦, 𝑧̂)|𝐷((𝑥, 𝑦, 𝑧̂), (𝑥𝜙, 𝑦𝜙, 𝑧̂)) ≤ 𝑟𝜙}, 
(2.1) 

where 𝑟𝜙 is the patch radius, and 𝐷 is the  Euclidean distance function. 

2.2.2.1.4 Training image patches. We defined a circular image patch 𝒑𝑖,𝑧̂ = Φ(𝒍𝑖,𝑧̂) =

Φ(𝑥𝑖,𝑧̂ , 𝑦𝑖,𝑧̂ , 𝑧̂), centered on 𝑖th landmark of the 36 landmarks (𝒍𝑖,𝑧̂) in the training images. 

The intensity-normalized patch corresponding to the 𝑖th landmark on the 𝑘th training 

image (𝐼𝑘) is defined as 

 𝒑̂𝑖,𝑧̂
𝑘 =

𝒑𝑖,𝑧̂ − 𝝁𝝓

𝜎𝜙
, 

(2.2) 
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where 𝜇𝜙 and 𝜎𝜙 are the mean and standard deviation of 𝒑𝑖,𝑧̂, respectively. For each set 

of corresponding slices in the training set, we calculated the mean intensity of each 

corresponding set of patch pixels, yielding a set of 36 mean intensity patches. The mean 

intensity patch corresponding to the 𝑖th landmark at slice position 𝑧̂ across the 𝑁 training 

images is defined as 

 𝒑̅𝑖,𝑧̂ =
1

𝑁
∑ 𝒑̂𝑖,𝑧̂

𝑘

𝑁

𝑘=1

 . 
(2.3) 

 

Figure 2.2: Training. determination of 36 prostate border landmarks. The four white dots 

are user-selected landmarks, the gray dots are interpolated landmarks, and the white cross 

is the origin. 

~120°

~60°

~120°

~60°
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2.2.2.1.5 Point distribution model. For each set of corresponding slices at slice position 𝑧̂, 

we also used the 36 landmarks to compute a PDM capturing prostate shape variability at 

each inferior-superior anatomic position. We used generalized Procrustes analysis[18] to 

align (translating, rotating and scaling) all the segmentations by minimizing the least 

squares error between the points. Principal component analysis was then used to compute 

the eigenvectors and eigenvalues of the covariance matrix for all of the training landmark 

coordinates[17]. 

2.2.2.2 Segmentation  

The segmentation algorithm incorporates a small set of inputs from the operator to 

define the inferior-superior extents of the prostate, as well as its center and orientation. 

These inputs are: (1) the apex-most and base-most slice numbers (𝑧); (2) the points at the 

center of the prostate on the apex- and base-most slices, and on the slice within the mid-

gland equidistant to these two slices; and (3) the anteroposterior (AP) orientation of the 

prostate as seen on this mid-gland slice. We developed a customized graphical user 

interface to efficiently collect these operator inputs. 

Using these operator inputs, we parameterized the axial slice positions of the test 

image as in training, permitting the extraction of the corresponding mean intensity 

patches and PDM corresponding to each axial slice from the training stage. The center 

points for all prostate slices were estimated by interpolating the three operator-provided 

center points on the base, mid-gland and apex slices. Therefore, a center point 

(𝑥𝐶(𝑧̂), 𝑦𝐶(𝑧̂), 𝑧̂) was available for each slice at position 𝑧̂. We approximated the 

orientation of the prostate in all axial slices from base to apex using the mid-gland AP 

symmetry axis (APSA). The segmentation was performed on each prostate axial slice 
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within the image volume, resulting in a 3D segmentation of the prostate from the base, 

through the mid-gland, to the apex. 

2.2.2.2.1 Preprocessing. Before delineating the prostate border, first we applied a median 

filter (using a 5 × 5 pixel sliding window) as an edge-preserving low-pass filter to each 

axial slice, in order to reduce image noise. 

2.2.2.2.2 Appearance-based boundary point selection. For each axial slice 𝑧̂ in the 3D 

volume, we used the prostatic center point (𝑥𝐶(𝑧̂), 𝑦𝐶(𝑧̂), 𝑧̂) and the APSA to define 36 

rays emanating from the center point, intended to be homologous to the orientations of 

the training landmarks. We used a radial search strategy to choose a set of 36 candidate 

points for the prostate border on each slice. As the search space was small, we used an 

exhaustive search to maximize the normalized cross correlation (NCC) of each mean 

intensity patch with the image region under the patch along the corresponding ray (Figure 

2.3), i.e.: 

 (𝑥̇𝑖,𝑧̂ , 𝑦̇𝑖,𝑧̂) = arg max
(𝑥,𝑦)

𝑁𝐶𝐶[𝒑̅𝑖,𝑧̂, Φ(𝑥, 𝑦, 𝑧̂)] , 
(2.4) 

 (𝑥, 𝑦) ∈ {(𝑥, 𝑦)|(𝑥, 𝑦, 𝑧̂) ∈ 𝑅𝑖, 𝑟𝑚𝑖𝑛 <  𝐷[(𝑥, 𝑦, 𝑧̂), (𝑥𝐶(𝑧̂), 𝑦𝐶(𝑧̂), 𝑧̂)] < 𝑟𝑚𝑎𝑥} , 
(2.5) 

where (𝑥̇𝑖,𝑧̂, 𝑦̇𝑖,𝑧̂) is the optimal point with the highest NCC along 𝑖th ray (𝑅𝑖), 𝑟𝑚𝑖𝑛 and 

𝑟𝑚𝑎𝑥 indicate the search start point and stop point on each ray, respectively, and 

 𝑁𝐶𝐶(𝒑1, 𝒑2) =
1

𝑀
∑

𝒑1(𝑚) − 𝜇ϕ1

𝜎ϕ1
×

𝒑2(𝑚) − 𝜇ϕ2

𝜎ϕ2

𝑀

𝑚=1

 , 
(2.6) 

where 𝑀 is the number of pixels in patches 𝒑1 and 𝒑2, and  𝜇ϕ1 and 𝜇ϕ2 are mean voxel 

intensities, and 𝜎ϕ1 and 𝜎ϕ1 are the standard deviations of pixel intensities of patches 𝒑1 
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and 𝒑2, respectively. This process yielded 36 candidate border points on each slice, with 

one on each ray. 

2.2.2.2.3 Shape-based boundary regularization [two-dimensional (2D)]. We aligned the 

mean shape in the PDM to each set of 36 candidate points using Procrustes analysis and 

extracted the parameters from the model that represented the shape of the candidate 

points. Then we calculated the parameters of the nearest shape in the PDM to the 36 

candidate points by restriction of each extracted parameter in the model to the range of 

[−1.5𝜆, 1.5𝜆] where 𝜆 is the corresponding eigenvalue. We defined those points with 

absolute distances greater than 1.5 standard deviation to the nearest shape in the model as 

outlier boundary points, and corrected them by replacing them with the corresponding 

points of the model shape. This procedure was iterated until all outliers were eliminated 

or a specified maximum number of iterations was reached. This resulted in a set of shape-

regularized boundary points, yielding a plausible prostate shape. 

2.2.2.2.4 3D regularization. After applying two-dimensional (2D) shape regularization to 

all of the prostate slices, for ray i, a second order curve was fitted to all the boundary 

points from base to apex in order to regularize the prostate shape in 3D. By interpolating 

the points with a spline from apex to base, we obtained a smooth, continuous 3D 

segmentation of the prostate. 
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Figure 2.3: Segmentation. 36 rays and patch translation along one ray (the dotted manual 

segmentation is overlaid for reference but is not provided to the segmentation algorithm). 

2.2.3 Validation metrics  

We evaluated our method against manual segmentations with complementary 

boundary-based (MAD), regional overlap (DSC, recall and precision) and volume 

difference (ΔV) metrics. The metrics are explained later in this section. To develop a 

reference against which to compare the metrics resulting from our segmentation 

algorithm, we measured the inter-operator variability in expert manual prostate border 

delineation on a subset of 10 of our 42 3D images. Each of these images was manually 

segmented in 3D by three observers: one radiologist, one radiation oncologist, and one 
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radiology resident, all specializing in prostate MRI. We calculated the metrics (1) in 2D 

for each slice, (2) in 3D for the whole gland, (3) in 3D for the superior-most third of the 

prostate (corresponding approximately to the base), (4) in 3D for the middle third (mid-

gland), and (5) in 3D for the inferior-most third (apex). In cases where the operator’s 

selected apex and base slices differed from those of the reference segmentation, we 

calculated the 2D metrics on the slices that were common to both segmentations. To 

apply our 3D metrics to the defined base, mid-gland and apex regions, the middle third of 

the slices common to both the operator’s and the reference segmentations were defined as 

the mid-gland region, and the remaining inferior and superior parts were considered to be 

the apex-most and base-most components, respectively. The operator interaction time 

was measured as well as inter-operator time and accuracy differences.  

2.2.3.1 Mean absolute distance  

The mean absolute distance (MAD) is a metric that measures the disagreement 

between two curves (in 2D) or surfaces (in 3D) as an aggregate of Euclidean distances 

between corresponding sets of points on these surfaces. We defined two modes for 

computing the MAD: unilateral and bilateral. In unilateral MAD, one surface is the 

reference surface and points are corresponded by finding the closest point on the 

reference surface to each point on the other surface. The MAD is then the average of the 

distances between corresponding points, defined as 

 𝑀𝐴𝐷(𝑋, 𝑌) =
1

𝐾
∑ min

𝑞∈𝑌
𝐷(𝑝, 𝑞)

𝑝∈𝑋

 , 
(2.7) 

where X and Y are the point sets (Y is the reference set), K is the number of points of X, 

𝑝 = (𝑥𝑝, 𝑦𝑝, 𝑧𝑝) is a point in X and 𝑞 = (𝑥𝑞 , 𝑦𝑞 , 𝑧𝑞) is a point in Y, and 𝐷(𝑝, 𝑞) is the 3D 
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Euclidean distance between p and q. The bilateral MAD is defined as the mean of two 

unilateral MADs, calculated with each of the two surfaces as the reference. We reported 

𝑀𝐴𝐷 in mm, with 𝑀𝐴𝐷 =  0 mm indicative of perfect alignment between shapes, and 

larger 𝑀𝐴𝐷 values indicating increasing levels of shape disagreement. 

2.2.3.2 Dice similarity coefficient 

The Dice similarity coefficient (DSC) [13] measures the misalignment between 

two shapes in terms of their overlap region. The DSC of two 3D shapes is 

 𝐷𝑆𝐶(𝑋, 𝑌) =
2(𝑋 ∩ 𝑌)

𝑋 + 𝑌
=

2𝑇𝑃

𝐹𝑃 + 2𝑇𝑃 + 𝐹𝑁
 , 

(2.8) 

where TP is the true positive (correctly identified) region, and FN is the false negative 

(incorrectly ignored) region. We reported 𝐷𝑆𝐶 as a percentage. A 𝐷𝑆𝐶 value of 100% 

indicates perfect alignment, and a 𝐷𝑆𝐶 value of 0% indicates no overlap of the two 

shapes. 

2.2.3.3 Recall rate 

The recall rate, or sensitivity, is the proportion of the reference, which is 

identified correctly, defined as 

 𝑅𝑒𝑐𝑎𝑙𝑙(𝑋, 𝑌) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 . 

(2.9) 

In this chapter, 𝑅𝑒𝑐𝑎𝑙𝑙 is the proportion of the reference prostate segmentation that is 

within the segmentation provided by the algorithm and is reported as a percentage. An 

ideal 𝑅𝑒𝑐𝑎𝑙𝑙 value of 100% indicates that the segmentation provided by the algorithm 

covers the entire reference segmentation, plus potentially some additional regions outside 

of the reference segmentation. 
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2.2.3.4 Precision rate  

The precision rate is the proportion of the segmentation which is true positive, and 

is defined as 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑋, 𝑌) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 . 

(2.10) 

where FP is the false positive (incorrectly identified) region. In this chapter, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 is 

the proportion of the segmentation provided by the algorithm that is within the reference 

prostate segmentation. An ideal 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 value of 100% indicates that the segmentation 

provided by the algorithm lies entirely within the reference segmentation, but may or may 

not completely overlap the reference segmentation. An ideal segmentation algorithm 

would yield 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 of 100% and 𝑅𝑒𝑐𝑎𝑙𝑙 of 100%. Computing and interpreting these 

metrics both separately and together provides a means for understanding both the 

magnitude and the meaning of the types of regional overlap errors made by a 

segmentation algorithm, complementing the information provided by 𝐷𝑆𝐶. 

2.2.3.5 Volume difference (ΔV) 

The signed volume difference (ΔV) is the subtraction of the volume of the 

reference segmentation from the volume given by the segmentation algorithm: 

 ∆𝑉 =  𝑉𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 − 𝑉𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 , 
(2.11) 

where 𝑉𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 is the volume of segmentation result, and 𝑉𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 is the volume of 

the prostate in the manual segmentation. ΔV is a signed metric and was reported in cm3 in 

this chapter. A negative value of ΔV indicates under-segmentation and a positive value 

indicates over-segmentation in terms of the volume of the prostate.  
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2.3 Experiments 

For all of the experiments in this chapter, we used a single value for the patch 

radius 𝑟𝜙, chosen by systematic search. We selected a representative subset of 6 images 

from the data set. We applied our algorithm using patch radii in the range of 3 𝑚𝑚 ≤

𝑟𝜙 ≤ 17 𝑚𝑚, using leave-one-out cross-validation to define training and test images. For 

each image, we measured the MAD, DSC, ΔV, as well as the average of recall and 

precision values (as one metric) for each patch radius. Then, we calculated the average of 

the four metrics across the 6 images, yielding four mean values, one for each metric. We 

ranked the radii based on each metric, resulting in 4 rankings; thus, each radius had four 

rank values. We calculated the average of the 4 rank values for each radius and chose the 

radius (𝑟𝜙 = 5) having the lowest average rank. 

The radial search started on each ray from a distance of 2 mm from the center 

point (𝑟𝑚𝑖𝑛 = 2 𝑚𝑚) and ended at 35 mm (𝑟𝑚𝑎𝑥 = 35 𝑚𝑚). This range was chosen 

based on our observed prostate size and imaging field of view in the data set. The 

maximum number of iterations for shape-based 2D regularization was set to be 25. 

2.3.1 Inter-operator variability: Manual segmentation 

We compared the observers’ segmentations in a pairwise fashion using our 3D 

validation metrics. We also compared each observer’s segmentation to the simultaneous 

truth and performance level estimation (STAPLE) [19] segmentation derived from all 

three observers’ segmentations. STAPLE is a method that is intended to estimate a single 

reference segmentation from a set of reference segmentations using a weighted voting 

scheme. 
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2.3.2 Accuracy and Inter-operator variability: Semi-automatic segmentation 

We performed a single-operator evaluation of the semi-automated segmentation 

algorithm on all 42 3D images in our data set, and compared the results to a single 

manual reference segmentation. We used a leave-one-out cross-validation methodology 

to split the 42 images into training (41 images) and test (one image) sets in each of 42 

rounds of testing, with metrics averaged over all rounds. 

We performed a multiple-operator evaluation of the semi-automated segmentation 

algorithm in terms of accuracy, inter-operator variability, and operator interaction time. 

We partitioned our data set into non-overlapping training and test sets of 32 and 10 

images, respectively. The 10-image test set was the same as the data set used in Section 

2.3.1. Nine operators, including 4 radiation oncologists, one radiologist, one radiology 

resident, one imaging scientist and two graduate students, all with research and/or clinical 

experience with prostate imaging, used our semi-automated segmentation algorithm to 

segment each of the 10 images. We computed aggregate 3D segmentation metrics by 

averaging across all operators, and we also compared the metrics for each operator with 

all other operator results to measure the inter-operator variability. Since operators’ 

judgments regarding anteroposterior prostate orientation and the locations of the apex-

most and base-most slices differed, we measured the inter-operator variability in base and 

apex slice selection and prostate orientation definition. We calculated the mean standard 

deviation of the operators’ selected apex and base slice numbers, as well as the APSA 

angle with respect to anterior-posterior axis of the MRI coordinate system. To measure 

the inter-operator variability in apex, base and mid-gland center point selection, we first 

determined the superior-most (base) and inferior-most (apex) slices that were common to 
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the segmentations of all observers, as well as the mid-gland slice equidistant to both. We 

then calculated the means of the 9 actual or interpolated center points at each of these 

slice locations. On each slice, we then measured the Euclidean distance of each of the 9 

center points to the mean point. 

We had three manual segmentations available on the same 10-image test set as 

was used in Section 2.3.1. To perform a direct comparison of our segmentation error 

metrics for manual and semi-automatic segmentation, we used those three manual 

segmentations to compute a STAPLE reference standard segmentation from each of the 

10 images. Our error metrics were calculated with respect to the STAPLE reference for 

the manual segmentations, as well as for semi-automatic segmentations performed by the 

same experts on the same 10 images. The mean and standard deviation of these metrics 

for the manual and semi-automatic scenarios were calculated to measure differences in 

accuracy and observer variability arising from using manual vs. semi-automatic 

segmentation. 

2.3.3 Sensitivity to initialization: Semi-automatic segmentation 

To examine the sensitivity of the semi-automated segmentations to the operator’s 

center point selection, we performed a simulation study wherein our 42 images were 

repeatedly segmented 1000 times using perturbed (in accordance with the previously 

observed inter-operator variability) prostate center points at each iteration. We calculated 

perturbed center point positions within the prostate by randomly sampling from 2D 

Gaussian distributions (three in total: one for each of the apex, mid-gland, and base 

slices) with means defined at “ideal” center points defined on the midpoint of the line 

segment between the most-anterior and the most-posterior prostate border landmarks 
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used in the training. The standard deviations of these Gaussian distributions were 

estimated based as the root mean square (RMS) distances to the means of the center 

points collected from the nine operators in Section 2.3.2. In this test, the sensitivity for 

each image was measured as the difference of the metrics based on the perturbed center 

points and the metrics based on the “ideal” center points. Therefore, for N images and 

1000 repetitions, we have 1000N measured differences. We reported the mean and the 

standard deviation of these 1000N values for each metric. 

To measure the sensitivity of the results to the selection of the anteroposterior 

symmetry axes, we performed another simulation study wherein our 42 images were 

repeatedly segmented 1000 times using randomly modified axis angles. For that purpose, 

at each iteration, we randomly selected a set of 42 angles from a Gaussian distribution 

with zero mean and the same standard deviation as the standard deviation of the observed 

angle across the nine operators in Section 2.3.2, and added them to the symmetry axis 

angles used in the single-operator experiment. We measured the sensitivity as the 

differences between metrics based on the randomly generated angles and the metrics 

based on the reference angles used in the single-operator experiment. We reported the 

mean and standard deviation of these differences across all patients and 1000 repetitions. 

2.3.4 Source of Variability: Semi-automatic segmentation 

To measure the relative contributions of different sources of variability for our 

semi-automatic segmentation algorithm, we designed a three-way analysis of variance 

(ANOVA) test, with reference, trainer, and operator factors. We used the same subset of 

10 images as used in the three-operator experiment, and two observers (denoted Observer 

#1 and Observer #2) who were selected due to the discordance of their manual 
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segmentations of these 10 images observed in the results of experiment described in 

Section 2.3.1. These two observers also executed the semi-automated segmentation on 

each of these 10 images. For these two observers, all possible configurations of manual 

segmentations used for reference (used to calculate the validation metrics), manual 

segmentations used as the trainers for the semi-automated tool, and semi-automated 

segmentation operators were tested. This yielded a set of segmentation error metrics for 

each configuration. We performed an ANOVA test for each of our five metrics and each 

region of interest including whole gland, mid-gland, base and apex to test the following 

null hypotheses: 

H01: The trainer has no significant impact on the error. 

H02: The operator has no significant impact on the error. 

H03: The reference has no significant impact on the error. 

2.4 Results 

2.4.1 Inter-operator variability: Manual segmentation 

The key result of this experiment was a substantially high inter-operator 

variability in manual segmentation. Table 2.1 shows the range of 3D metrics in pair-wise 

comparison between operators and also between each operator and STAPLE reference. 

Since in this experiment, the segmentations in each pair-wise comparison were both 

performed manually, the MAD values were calculated in bilateral mode and the absolute 

volume difference (|∆𝑉|) was calculated. MAD values were calculated in unilateral mode 

with STAPLE as the reference, and the signed volume difference (∆𝑉) was reported. 

Figure 2.4 qualitatively shows the inter-observer variability in prostate segmentation. 
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Table 2.1: Inter-operator variability in manual segmentation: Range of mean MAD, 

DSC, recall, precision, and ΔV (bilateral MAD and |ΔV| was used for “Operator vs 

Operator” section). 

  Range of mean metric values 

 
Region of interest MAD (mm) DSC (%) Recall (%) Precision (%) ΔV (cm3) 

Operator vs 

Operator 

Whole gland [1.0,2.8] [74,90] [87,99] [60,94] [1.9,18.3] 

Mid-gland  [0.7,1.8] [88,96] [96,99] [81,95] [0.1,3.3] 

Apex  [1.1,3.0] [65,88] [83,98] [51,94] [0.5,6.1] 

Base  [1.3,3.5] [66,86] [79,99] [52,93] [1.5,7.7] 

Operator vs 

STAPLE 

Whole gland [0.2,3.1] [78,98] [66,100] [87,98] [-2.8,15.5] 

Mid-gland  [0.2,1.9] [89,98] [82,100] [96,99] [-0.5,3.2] 

Apex  [0.2,3.4] [70,99] [58,100] [84,98] [-0.8,5.3] 

Base  [0.2,3.7] [72,98] [60,100] [80,98] [-1.8,7.0] 

 

  

Figure 2.4: Inter-observer variability. The 3D surfaces show the three manual 

segmentations and the algorithm results. The three solid contours show the three 

observers’ manually drawn contours. The dashed contours show the algorithm’s results. 

2.4.2 Accuracy and inter-operator variability: Semi-automatic segmentation 

The key results of this experiment were that (1) the accuracy measured for our 

algorithm based on one reference, similar to the accuracies of most of the other 

segmentation algorithms presented in the literature, are within the inter-operator 

variability range for manual segmentation on our data set; (2) the variability observed 

between different operators in the measured errors using a multi-operator study was not 

significant based on most of the metrics and for most regions of interest. The results of 

the single-operator evaluation of the semi-automated segmentation algorithm on all 42 
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3D images in our data set are shown in Table 2.2 and compared to previous work. For the 

whole gland, we measured a mean±standard deviation MAD (unilateral) of 2.0±0.5 mm, 

DSC of 82±4%, recall of 77±9%, precision of 88±6% and ΔV of -4.6±7.2 cm3. The 

measured mean±standard deviation execution time using an unoptimized Matlab research 

platform on a single CPU core was 85±20 sec. Under the assumption of normal 

distribution of the error metric values, we conducted one-tailed heteroscedastic t-tests 

[20] to compare our results to previous work, in each case testing the null hypothesis 

regarding the relative performance of the methods. With α=0.05, corresponding letters 

show where the null hypothesis was rejected in Table 2.2. Figure 2.5 shows qualitative 

and quantitative results for three sample prostates. 

Table 2.2: Accuracy and variability for semi-automatic segmentation: mean±standard 

deviation of MAD, DSC, recall, precision, and ΔV. Corresponding letters show 

statisticaly significant differences between each error value of our method and the 

corresponding error value of another method where applicable. (p < 0.05). 

Methods N Region of interest MAD (mm) DSC (%) Recall (%) Precision (%) ΔV (cm3) 

Our method  42 

Whole gland 2.0±0.5 bi 82±4 ac 77±9 m 88±6 n -4.6±7.2 

Mid-gland (1/3) 1.6±0.5 j 90±3d 90±7 91±6 -0.1±2.0 

Apex (1/3) 2.0±0.7 gk 79±6 e 82±14 80±13 0.1±3.3 

Base (1/3) 2.6±0.8 l 73±10 fh 61±14 93±6 -4.5±3.7 

Liao et al [15] 66 Whole gland  1.8±0.9 88±3 a - - - 

Toth et al [14] 108 

Whole gland 1.5±0.8 b 88±5 c - - - 

Mid-gland (1/3) - 91±4 d - - - 

Apex (1/3) - 84±9 e - - - 

Base (1/3) - 88±6 f - - - 

Vikal et al [12] 3 

Mid-gland (9/13) 2.0±0.6 93±3 - - - 

Apex (2/13) 3.8±0.9 g 80±5 - - - 

Base (2/13) 3.9±1.8 86±8 h - - - 

Martin et al 

[11] 
17 

Whole gland 3.4±2.0 i - 89±6 m 78±12 n - 

Mid-gland 2.4±1.3 j - - - - 

Apex 2.9±1.3 k - - - - 

Base 4.3±2.0 l - - - - 
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 W.G. M.G Apex Base 

MAD 

(mm) 
1.7 1.3 1.3 2.1 

DSC 

(%) 
85 92 85 80 

Recall 

(%) 
84 97 83 73 

Precision 

(%) 
87 88 86 87 

ΔV 

(cm3) 
-1.3 1.4 -0.2 -2.5 

 

 

 

 W.G. M.G Apex Base 

MAD 

(mm) 
1.8 1.2 1.8 2.4 

DSC 

(%) 
82 92 80 75 

Recall 

(%) 
79 96 98 61 

Precision 

(%) 
86 88 68 99 

ΔV 

(cm3) 
-2.4 0.9 2.4 -5.6 

 

 

 

 W.G. M.G Apex Base 

MAD 

(mm) 
2.2 1.7 2.3 2.4 

DSC 

(%) 
85 91 83 82 

Recall 

(%) 
84 89 97 71 

Precision 

(%) 
86 93 73 97 

ΔV 

(cm3) 
-0.9 -0.5 3.2 -3.6 

 

Figure 2.5: Qualitative and quantitative results for three sample prostates. In the left 

column, the semi-transparent surfaces show the manual segmentation as reference, and 

the solid surfaces show the algorithm results. On the 2D cross sections, the manual 

segmentation is shown with a solid line, and the algorithm’s segmentation is shown with 

a dashed line. The most inferior and the most superior slices that contain both reference 

and algorithm contours were, respectively, shown as the apex and base. In the right 

column, the tables show the measured error metrics for that corresponding cases in whole 

gland (W.G.), as well as apex, mid-gland (M.G.), and apex. 
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For our multiple-operator evaluation of the semi-automated segmentation, Figure 

2.6 shows the results for each of the 9 operators in comparison with STAPLE. The 

average interaction time across 9 operators and 10 images was measured as 28±14 sec. 

To determine whether there are significant differences between the means of the error 

metrics for each operator we conducted one-way ANOVA followed by Bonferroni’s 

pairwise tests with the null hypothesis that the means of the metrics for all the 9 operators 

were the same. We showed the post ANOVA test results in Figure 2.6 for each region of 

interest, where ANOVA detected significant inter-operator differences in terms of any of 

the metrics (α=0.05). Table 2.3 also shows the average results across all 9 operators and 

10 images and compares it to the results based on one operator on 42 images reported in 

Table 2.2. For each metric, we applied a t-test with the null hypothesis that the means of 

the metric resulting from the 9 operators’ segmentations of 10 images are the same as the 

mean of the metric for one operator’s segmentation of 42 images (i.e. comparing the top 

row of Table 2.3 to the bottom row, for each metric and within each anatomic region) . 

Table 2.3: The average results across the nine operators and 10 images compared to the 

single operator results across 42 images: mean±standard deviation of MAD, DSC, recall, 

precision,  and ΔV. Corresponding letters indicate statistically significant differences 

between two modes (p < 0.05). 

Methods N Region of interest MAD (mm) DSC (%) Recall (%) Precision (%) |ΔV| (cm3) 

One operator 

(Table 2.2) 
42 

Whole gland 2.0±0.5 82±4 b 77±9 d 88±6 -4.6±7.2 

Mid-gland  1.6±0.5 90±3 90±7 91±6 -0.1±2.0 

Apex  2.0±0.7 79±6 82±14 80±13 0.1±3.3 

Base  2.6±0.8 a 73±10 c 61±14 e 93±6 -4.5±3.7 

Nine operators 10 

Whole gland 2.2±0.7 77±8 b 72±12 d 86±10 -4.0±5.5 

Mid-gland  1.7±0.7 89±4 88±8 91±7 -0.1±1.7 

Apex  2.0±1.0 78±12 84±15 78±17 0.6±3.3 

Base  2.9±0.8 a 65±12 c 54±17 e 92±11 -4.5±3.4 

 

For each image, the apex and base slices were manually selected by each of the 9 

operators. We calculated the resulting standard deviation of the slice positions for each 
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image and obtained their average across all 10 images. The mean standard deviation of 

the operators' selected apex and base slices were 1.8 slices (4 mm) for the apex and 1.3 

slices (2.9 mm) for the base. The range of the maximum inter-operator difference at the 

apex was 3 to 9 slices (6.6 mm to 19.8 mm) with a mean of 5.7 slices (12.5 mm), and this 

range for base was 2 to 10 slices (4.4 mm to 22 mm) with a mean of 3.8 slices (8.4 mm). 

The mean standard deviation of the APSA angle with respect to anteroposterior axis of 

the MRI coordinate system was 3.2 degrees. The differences between operators ranged 

from 4.0 to 17.8 degrees with a mean of 9.8 degrees. 

For the center points, the measured distances ranged from 0 mm to 3.9 mm with 

an average of 1.1 mm at the apex, 0.2 mm to 4.3 mm with an average of 1.3 mm at the 

mid-gland, and 0.1 mm to 4.9 mm with an average of 1.7 mm at the base. The RMS of 

the point distances were 1.3 mm, 1.5 mm, and 2.0 mm at the apex, mid-gland and base, 

respectively. The actual range of distances by which the center points were perturbed 

were [-5 mm, +5mm], [-7 mm, +7 mm], and [-8 mm, +8 mm] for the apex, midgland, and 

base, respectively. 

Table 2.4 shows the of manual and semi-automatic segmentations performed by 

the same three operators on 10 images. 

Table 2.4: Consistency of the manual and the semi-automatic segmentations: average of 

means (average of standard deviations) of MAD, DSC, recall, precision,  and ΔV across 3 

manual and 3 semi-automatic segmentations of the prostate by 3 expert operators. 

 
N Region of interest MAD (mm) DSC (%) Recall (%) Precision (%) ΔV (cm3) 

Manual 

segmentation 
10 

Whole gland 1.3 (1.6) 90 (11) 88 (19) 94 (6) 3.9 (10.1) 

Mid-gland  0.8 (0.9) 95 (5) 93 (10) 97 (2) 0.8 (2.1) 

Apex  1.4 (1.8) 86 (15) 85 (24) 93 (8) 1.4 (3.3) 

Base  1.6 (1.9) 86 (14) 86 (22) 91 (11) 1.6 (4.8) 

Semi-automatic 

segmentation 
10 

Whole gland 1.9 (0.3) 80 (4) 75 (7) 88 (3) -3.2 (2.9) 

Mid-gland  1.5 (0.3) 90 (2) 90 (3) 91 (2) 0.2 (0.7) 

Apex  1.8 (0.4) 82 (4) 87 (8) 80 (8) 0.8 (1.2) 

Base  2.7 (0.5) 68 (7) 57 (12) 93 (6) -4.2 (2.5) 

 



www.manaraa.com

79 

 

  

  

 

Figure 2.6: Inter-observer variability. Mean±standard deviation (a) MAD, (b) DSC, (c) 

recall, (d) precision, and (e) V for each of the 9 operators for whole gland (W.G.), apex, 

mid-gland (M.G.), and base (P < 0.05). The last two columns in each section show the 

average variations of the metric using perturbed prostate center point, and anteroposterior 

symmetry axes, respectively. 
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2.4.3 Sensitivity to initialization: Semi-automatic segmentation 

The key result of this experiment was that the sensitivity of the algorithm 

accuracy to center point and anteroposterior symmetry axis selection was substantially 

lower than the measured error metric values. The means and standard deviations of the 

variation of metrics with regards to center point and anteroposterior symmetry axes 

variations are shown in Figure 2.6 for the whole gland as well as apex, mid-gland, and 

base regions. 

2.4.3.1 Sensitivity to centre point selection 

For the whole gland, the mean and the range of variation ([minimum, maximum]) 

for MAD, DSC, recall, precision and ΔV, respectively, were 0.1 mm ([-1.3 mm, 2.0 

mm]), -1% ([-24%, 11%]), -1% ([-33%, 16%]), -1% ([-19%, 16%]), and -0.2 cm3 ([-18.4 

cm3, 15.4 cm3]). The mean and standard deviation of the differences between results 

based on randomly generated center points and reference center points across 42 patients 

and 1000 repetitions are shown in Table 2.5. 

2.4.3.2 Sensitivity to anteroposterior symmetry axes selection 

For the whole gland, the mean and the range of variation ([minimum, maximum]) 

for MAD, DSC, recall, precision and ΔV, respectively, were 0.0 mm ([-0.7 mm, 0.9 

mm]), 0% ([-8%, 5%]), 0% ([-15%, 8%]), 0% ([-11%, 8%]), and -0.2 cm3 ([-9.2 cm3, 4.5 

cm3]). Table 2.5 shows the mean and one standard deviation of the differences between 

results based on randomly generated angles and the reference measurements across 42 

patients and 1000 repetitions. 
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Table 2.5: Sensitivity of the semi-automatic algorithm to initialization (center points and 

anteroposterior symmetry axes): mean±standard deviation of MAD, DSC, recall, 

precision,  and ΔV offsets from reference measurements across 1000 repetitions × 42 

patients. 

 
N # of Iterations Region of interest MAD (mm) DSC (%) Recall (%) Precision (%) ΔV (cm3) 

Sensitivity to 

center point 

selection 

42 1000 

Whole gland 0.11±0.30 -1.0±2.6 -1.3±3.8 -0.7±2.6 -0.2±2.0 

Mid-gland  0.14±0.44 -1.1±3.0 -1.4±4.5 -0.6±3.0 -0.1±1.0 

Apex  0.09±0.39 -0.9±3.2 -1.0±3.4 -0.7±4.7 0.0±0.8 

Base  0.09±0.41 -1.2±4.4 -1.3±6.0 -0.8±3.4 -0.1±1.1 

Sensitivity to 

anteroposterior 

symmetry axes 

selection 

42 1000 

Whole gland 0.02±0.15 -0.3±1.2 -0.4±2.0 -0.1±1.7 -0.2±1.1 

Mid-gland  0.03±0.19 -0.2±1.2 -0.4±2.3 0.0±2.0 0.0±0.6 

Apex  0.00±0.23 -0.1±1.9 -0.2±2.3 0.1±3.0 -0.1±0.6 

Base  0.04±0.22 -0.4±2.4 -0.5±3.6 0.0±1.9 -0.1±0.6 

 

2.4.4 Source of variability: Semi-automatic segmentation 

The key result of this experiment was that the operator has less impact on the 

algorithm accuracy, as compared to the reference and trainer. For all of the null 

hypotheses tested by ANOVA, rejection was reported at the p < 0.05 level. For the mid-

gland, there was a significant effect of the trainer on all the metrics and reference had a 

significant impact on three of the metrics (ΔV, recall, and precision). There was no 

significant impact of the operator on the metrics. For the apex, the reference had a 

significant impact on 4 of the metrics (DSC, ΔV, recall, and precision) and the trainer and 

operator had no significant impact on the metrics. For the base, the reference had a 

significant impact on all of the metrics, the operator had significant impact on four 

metrics (DSC, ΔV, recall and precision) and the trainer had significant impact on two 

metrics (recall and precision) and a marginally significant (p < 0.1) impact on DSC. 

2.5 Discussion  

In the presented semi-automatic segmentation algorithm, we first trained our 

algorithm to capture the inter-patient local appearance of the prostate border as well as 

the prostate shape characteristics on different axial cross-sections. Then for an unseen 
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MR image, the prostate border was locally defined based on the learned appearance 

characteristics of the prostate border at the corresponding location. The defined border 

was regularized on each 2D axial slice using the corresponding 2D shape model obtained 

from training. Finally, a 3D shape regularization was applied to the result. In the 

statistical modeling method referred to as an active appearance model [21], the global 

appearance of the image is used in combination with the shape model of the prostate to 

segment the prostate. Therefore, an inter-patient internal appearance variation of the 

prostate gland that could be caused e.g. by differently-located prostate tumours or benign 

prostatic hyperplasia nodules challenges the segmentation. Furthermore, using the 

combination of the shape and appearance modeling challenges the simultanous shape 

modeling when there is a local appearance difference between the test image and the 

appearance model. We addressed this issue by separating the shape model from the 

appearance based segmentation.  

2.5.1 Inter-operator variability: manual segmentation 

We observed substantial inter-operator variability in manual segmentation of the 

prostate on T2W ER MRI (Table 2.1), with differences between operators ranging 

between 0.7 mm and 3.5 mm in terms of MAD, and between 65% and 96% in terms of 

DSC, depending on the observer pair and the anatomic location. There was more inter-

operator consistency in delineation of the mid-gland, with greater discordance at the apex 

and base. These results suggest that measured errors for prostate segmentation algorithms 

on T2W ER MRI may vary substantially as a function of the manual segmentation used 

as the reference. Therefore, it is challenging to define a “gold standard” for this task. 

Consequently, segmentation results reported for an algorithm using a single-operator 
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reference may change substantially if a different operator were to delineate a set of 

reference segmentations on the same data set. This inter-observer variability also renders 

comparison of algorithm performance challenging when different data sets and reference 

segmentations are used in different published results. One approach to mitigate this effect 

is to evaluate algorithm performance against multiple expert reference segmentations, 

and assess the algorithm’s segmentation error in the context of inter-operator variability 

in manual segmentation on the same data set. 

2.5.2 Accuracy and inter-operator variability: Semi-automatic segmentation 

For comparison with previous work, we conducted a single-operator, single-

reference experiment measuring the accuracy of our presented semi-automatic 

segmentation algorithm. Some statistically significant differences were found with 

respect to other published methods (Table 2.2) but were within the observed ranges of 

human expert variability in manual delineation on our data set (Table 2.1). Concordant 

with previously published results, our data show that segmentation of the apex and 

(especially) the base is considerably more challenging than the segmentation of the mid-

gland, with errors contributed not only by the unusual shape and appearance of these 

structures in some patients (e.g. the shape of the base on the manual segmentation shown 

in the right-hand panel of Figure 2.4), but also by the substantial variability we measured 

in experts’ selections of the apex-most and base-most slices. Our results in Table 2.2 

compare favorably with many of the segmentation error metric values reported from the 

PROMISE12 challenge [16]; however, the different nature of the data sets in terms of ER 

coil usage challenges the interpretation of this comparison. For the prostate as a whole, 

our algorithm and the top performing algorithms in PROMISE12 appear to be 
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asymptotically approaching human performance as reflected by inter-observer variability 

in manual contouring. These observations suggest that further improvement of algorithms 

for computer-assisted segmentation of the mid-gland are unlikely to provide measurable 

impact, and that efforts toward improved accuracy and consistency in prostate apex and 

base segmentation are a higher priority. Informal observations of our results suggest 

negligible impact of magnetic field strength on segmentation error; however, this would 

be an interesting area of future research on a larger data set of 1.5 Tesla and 3.0 Tesla 

images. 

We observed maximum inter-operator differences in apex-most and base-most 

slice selection of 12.5 mm at the apex and 8.4 mm at the base on average; these represent 

aggregates of the largest distances one might observe between these observers’ apex and 

base-most slices, respectively. On the other hand, when the mean surface-to-surface 

distances (i.e. the MAD values) were calculated for the same nine observers using the 

semi-automatic algorithm (Table 2.3) and for a subset of three of the observers doing 

manual contouring (Table 2.1), smaller values (~2–4 mm) were observed. Although the 

mean surface-to-surface distances would be expected to be smaller than the measured 

maxima (as observed), the magnitudes of the observed differences in our data suggest 

that the bulk of the surfaces at the apex and base are in better spatial agreement than are 

the extrema of the prostate, which cover a relatively smaller surface area and thus have 

less influence on the calculated MAD metric values. Thus, there appear to be spatial 

differences in terms of where most of the inter-observer variability lies; there is greater 

variability in localizing the superior-most end of the apex and inferior-most end of the 

base, compared to the variability in contouring the apex and base as a whole. 
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Although our use of signed prostate volume differences as well as recall and 

precision rates as complementary evaluation metrics is unusual with respect to previously 

published work in this area, these metrics can be helpful in distinguishing different types 

of segmentation errors in a way that could facilitate the understanding the clinical 

applicability of the algorithm and facilitate adoption. For instance, in the lower-most 

segmentation shown in Figure 2.5, the algorithm over-contours the apex and under-

contours the base overall. These two errors are quite different in terms of potential 

clinical impact; for example, in a radiation oncology context, under-contouring could 

result in untreated cancer whereas over-contouring could result in radiation damage to 

surrounding healthy tissue. The table adjacent to this example in Figure 2.5 indicates that 

the MAD and DSC metrics, frequently reported in previous literature, are nearly identical 

for the apex and base. However, for the apex, recall is substantially larger than precision, 

and vice-versa for the base, capturing the nature of this segmentation error. The ΔV 

metric also directly captures this error in a complementary fashion. 

Our nine-operator experiment resulted in small degradations of accuracy (Table 

2.3), although the results were still within the range of expert variability in manual 

segmentation (Table 2.1). Our three-operator experiment directly comparing 

segmentation error and variability for manual and semi-automated segmentation of the 

same 10 images compared to the same STAPLE reference standard indicated an increase 

in error with a concomitant decrease in variability when the semi-automated tool was 

used. This suggests the presence of a tradeoff between segmentation accuracy and 

variability that is related to the use of automation; computer-assisted delineation may 

increase the consistency of segmentations at the expense of some accuracy. This lost 



www.manaraa.com

86 

 

accuracy could in principle be recovered through minor segmentation editing, but this 

remains to be tested. The observed reduction in segmentation variability also suggests 

that the semi-automatic segmentation tool could be valuable in the hands of the novice 

radiologist or radiation oncologist, providing useful guidance in the form of a 

segmentation that is consistent with a training set constructed based on segmentations 

provided by experienced experts. 

2.5.3 Sensitivity to initialization: Semi-automatic segmentation 

Our data indicate that variability in the semi-automatic segmentation results 

arising from varying the inputs to the algorithm (Table 2.5) is substantially smaller than 

the segmentation accuracy and variability observed for both manual and semi-automatic 

segmentation. This suggests that the algorithm is robust to the placement of center points 

and orientation of the gland by the user, and helps to explain the accuracies we obtained 

despite minimal user interaction; users do not need to exercise a high degree of time-

consuming accuracy and precision in interacting with this tool. Moreover, since the 

prostate APSA is very close to the image AP axis, it might be possible to replace it with 

the image AP axis and minimize the user interaction without loss of accuracy. 

2.5.4 Source of variability: Semi-automatic segmentation 

Our ANOVA test results indicated that in all regions of the prostate, the reference 

segmentation used for evaluation had the most significant impact on segmentation error. 

This reinforces our earlier observation (Section 2.5.1) that measurements of a 

segmentation algorithm’s performance based on single reference segmentation could vary 
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substantially according to the particular expert reference segmentation used for 

evaluation. 

With the exception of the base region, our test did not detect a significant impact 

of the operator on any of the error metrics. This suggests that the use of the proposed 

semi-automated segmentation tool could result in improved inter-operator consistency of 

mid-gland and apex delineations, but that further work would be useful to improve the 

consistency of delineation of the challenging area of base, where the prostate meets the 

bladder neck. 

The significant impact of the trainer on all the metrics (within the mid-gland), in 

conjunction with the above observation regarding the impact of the operator, suggests 

that in this region the semi-automatic segmentation algorithm might provide outputs that 

mimic the trainer more than the operator. Hence, this tool could be useful in the hands of 

an expert trainer and a relatively more novice operator. Further work involving a larger 

sample size will be required to elucidate the impact of the trainer on the apex and base 

regions. 

2.5.5 Limitations 

The results of this work must be considered in the context of its strengths and 

limitations. To the best of our knowledge, this work represents the first use of the 

complementary MAD, DSC, recall, precision and ΔV error metrics in the evaluation of a 

prostate segmentation algorithm for T2W ER MRI, using multiple operators and multiple 

reference standard segmentations. However, our study was limited in several ways. First, 

our sample size (42 images for the single-operator experiment and 10 images for the 

multiple-operator experiment) is small and therefore the results of this study should be 
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considered to be hypothesis-generating, and our conclusions should be interpreted 

accordingly. Second, the only MR appearance information used by our segmentation 

algorithm to delineate the border is MR image intensity; no derived quantities such as 

image texture measures were utilized. Although using such features may add complexity 

and computation time to the method, such an approach could yield improved results, 

especially in the context of high variability of shape of the base and apex where our shape 

regularization step is less applicable. Third, we did not provide the operators with the 

opportunity to edit the semi-automatic segmentations to their satisfaction; an interesting 

avenue of further work would be to measure the time required for the user to obtain a 

satisfactory segmentation using the output of the semi-automatic tool as a starting point. 

Finally, since all of the images in our data set are from patients with confirmed PCa, the 

appearance of the prostate could have been locally modified in the presence of lesions 

near the capsule, increasing the challenge of accurate prostate segmentation using a local 

model of appearance; thus, our patient selection may have pessimistically affected our 

reported semi-automatic segmentation results. 

2.5.6 Conclusions 

We presented a comprehensive evaluation of a 3D segmentation algorithm for 

prostate T2W ER MRI, comprising boundary-, region-, and volume-based metrics 

computed separately for the whole gland, mid-gland, apex and base. We tested the 

algorithm using multiple reference segmentations and multiple operators, and observed 

reduced inter-operator variability via the use of this semi-automated tool. Minimal 

operator interaction of less than 30 sec, on average, was required. Based on our results, 

further work in this area should be focused on improving segmentation accuracy and 
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variability at the prostatic base and apex, including reducing inter-observer variability in 

selecting the apex-most and base-most slices of the prostate. Due to high inter-operator 

variability in the manual prostate segmentation, particularly at the apex and base, it 

appears to be challenging to interpret reported improvements in segmentation algorithm 

accuracy based on a single-operator manual reference standard. We anticipate that our 

comprehensive approach to segmentation evaluation will facilitate the assessment and 

adoption of our algorithm by clinical end users, who can interpret the segmentation 

metrics as appropriate to their clinical use cases of interest. 
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Chapter 3. 

  

Accuracy and acceptability of an automated method for 

prostate segmentation in magnetic resonance imaging † 

 

3.1 Introduction 

Prostate cancer (PCa) is the most commonly diagnosed cancer in men in North 

America, excluding skin carcinoma. More than 30,000 deaths from PCa are predicted in 

the United States and Canada for 2015 [1, 2]. Magnetic resonance (MR) imaging (MRI), 

due to its promising potential in diagnosis and staging of PCa [3, 4], is one of the imaging 

modalities utilized in multiple emerging diagnosis and therapeutic procedures. 

Contouring of the prostate on MRI could assist with PCa diagnosis and therapy planning. 

More specifically, T2-weighted (T2w) MRI is superior to other MRI sequences for 

anatomic depiction of the prostate gland and the surrounding tissues [5]. The use of an 

endorectal (ER) receive coil helps MRI acquisition performance in terms of image quality 

and spatial resolution [6]. However, it deforms and displaces the prostate gland [7], 

produces some ER coil-based imaging artifacts [8], and detects more edges and details 

that challenge the adaptation of computer-assisted prostate contouring algorithms 

designed for non-ER MRI to this context. 

                                                 
† A version of this chapter has been submited: M. Shahedi, D. W. Cool, C. Romagnoli, G. S. Bauman, 

M. Bastian-Jordan, A. Fenster, and A. D. Ward, " Accuracy and acceptability validation of an automated 

method for prostate segmentation in magnetic resonance imaging," Medical Physics. 
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Manual segmentation of prostate MRI is a laborious and time-consuming task that 

is subject to inter-observer variability [9]. This motivates the need for fast and 

reproducible segmentation algorithms for T2w ER prostate MRI. There have been several 

algorithms published in the literature for segmentation of the prostate on T2w ER MRI. 

Martin et al. [10] presented a semi-automatic algorithm for segmentation of the prostate 

on MRI based on registration of an atlas to the test image. They evaluated their method 

on 17 MR images using manual segmentations performed by a single operator as the 

reference standard. To measure the accuracy of their method, they used a surface-based 

metric for different regions of interest (ROIs) including the whole prostate gland, base, 

midgland and apex regions. They also used region based metrics, but for the whole gland 

only. They reported higher atlas registration error, yielding to  higher segmentation error, 

for their methods on small prostates (less than 25 cm3) compared to the atlas registration 

error on the larger prostates. Vikal et al. [11] developed a two-dimensional (2D) slice-by-

slice segmentation algorithm based on shape modeling for three-dimensional (3D) 

segmentation of the prostate on T2w MRI. Their semi-automatic method was initialized 

by user selection of prostate centre point on one of the central slices of the prostate. In 

their method, segmentation starts from the selected central slice. The segmentation on 

each 2D slice is used as an initialization for segmenting its adjacent slice. They evaluated 

their method on three images using the mean absolute distance (MAD) and Dice 

similarity coefficient [12] (DSC), compared to a single reference standard developed by 

consensus of two expert observers. Toth and Madabhushi [13] developed a semi-

automatic segmentation algorithm based on a landmark-free active appearance model and 

level set shape representation method. To evaluate their method they applied the 
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algorithm to 108 T2w ER MRI and compared the results to manual segmentations 

performed by one observer using the MAD for the whole gland only and the DSC for 

whole-gland, apex, midgland and base. Although results were reported for a second 

observer on a subset of 17 images, inter-observer variability of their method was not 

reported. Liao et al. [14] presented a coarse-to-fine hierarchical automatic segmentation 

algorithm for prostate segmentation on T2w MRI. They used the MAD, DSC and 

Hausdorff distance error metrics for evaluation of their method on the whole gland using 

a manual reference segmentation performed by one observer on 66 T2w MR images. 

Cheng et al. [15] developed an automatic approach consisting of two main steps: first, a 

coarse segmentation based on an adaptive appearance model and then a segmentation 

refinement using a support vector machine. They used region-based metrics computed 

only within the whole gland to evaluate their method, using manual reference 

segmentations verified by one radiologist. In 2012, 11 teams were involved in a challenge 

for prostate MRI segmentation, called PROMISE12, held as part of the Medical Image 

Computing and Computer Assisted Intervention (MICCAI) conference. The challenge 

tested the performance of the segmentation algorithm presented by each team in two 

steps; online and live challenges. The image data set used by the challenge contained 

both ER and non-ER MR images and the results were evaluated against one set of manual 

segmentations provided by one expert and reviewed and edited, if necessary, by another 

expert using surface-, region- and volume-based metrics for the whole gland, apex and 

base regions [16]. 

In most previously published work, the segmentation result has been evaluated by 

comparison against a single manual reference segmentation. However, there is high inter-
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observer variability in contouring the prostate in MRI [9] and changing the manual 

reference segmentation used for segmentation evaluation likely has a substantial impact 

on the reported segmentation performance. Therefore, it is necessary to consider this 

variation when validating segmentation algorithms. Furthermore, in most published 

studies, the algorithm results have been evaluated using only one or two error metrics. 

Since each metric is sensitive to certain types of errors (e.g. the MAD is sensitive to 

large, spatially localized errors, whereas the DSC is sensitive to smaller, global errors), 

there is not a single globally-accepted metric for comprehensive evaluation of 

segmentation algorithms. Thus, using a set of metrics that are sensitive to different types 

of error such as surface disagreement, regional misalignment, and volume differences, 

yields a more comprehensive algorithm evaluation. Moreover, the accuracy and 

repeatability of the prostate segmentation varies for different parts of the gland in manual 

[9] and computer-based [10, 11, 13, 17] segmentations. Some groups reported 

segmentation error only for the whole prostate gland without reporting the error for the 

gland subregions such as the apex, mid-gland and base. Segmentation error metrics 

computed for the whole gland are challenging to interpret, since large errors in the apex 

and base regions can be offset by smaller errors in the mid-gland. When the 

segmentations are used to guide radiation or ablative interventions, this is especially 

important since the apex and base are near to sensitive structures such as the bladder, 

urethra, and penile bulb. 

We previously described a semi-automatic segmentation approach for ER prostate 

MRI based on local appearance and shape characteristics and evaluated its performance 

in comparison with manual segmentation in terms of accuracy and inter-operator 
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variability [17]. We applied our evaluation using different types of error metrics (i.e. 

surface-, region- and volume-based metrics) and assessed the performance of the 

algorithm over the whole prostate gland as well as within the apex, midgland and base 

subregions. Our semi-automatic segmentation method required that the user select four 

initial points to run the contouring algorithm. Thus, the algorithm’s segmentation results 

depended on the user’s judgment of the correct loci for these points. This included a 

requirement that the user indicate the apex-most and base-most slices of the prostate, 

which is a challenging task with substantial inter-observer variability. 

Although many segmentation algorithms have been proposed, an operator-

independent algorithm that has been comprehensively validated using multiple 

complementary error metrics against a multi-observer reference standard remains elusive. 

In this chapter, we build on our previous semi-automated segmentation algorithm to 

develop a fully automated approach that has no dependence on user input. We compare 

the fully automatic segmentation performance to the semi-automatic and manual 

approaches. We address the following four research questions in this chapter. (1) What is 

the accuracy of the automated segmentation algorithm when compared to a single-

observer manual reference standard?  (2) What is the difference in the time required to 

use our automated segmentation algorithm and our semi-automated segmentation 

algorithm?  (3) What is the difference in accuracy between our automated segmentation 

algorithm and our semi-automated segmentation algorithm?  (4) Is the measured 

misalignment between the computer-assisted segmentations and manual segmentations 

within the range of inter-expert variability in manual segmentation? 
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3.2 Materials and Methods 

3.2.1 Materials 

The data set contained 42 axial T2w fast spin echo ER MR images acquired from 

patients with biopsy-confirmed PCa. 23 of the images were acquired with TR = 4000–

13000 ms, TE 156–164 ms, NEX = 2, and for the other 19 images TR = 3500–7320 ms, 

TE = 102–116 ms, NEX = 1–2. Nine and 33 images were obtained with 1.5 and 3.0 Tesla 

field strengths, respectively. The voxel sizes varied from 0.27 × 0.27 × 2.2 mm to 0.44 × 

0.44 × 6 mm, covering the range typically seen in clinical prostate MRI. Four different 

MRI scanners were used for image acquisition: MAGNETOM Avanto, MAGNETOM 

Verio (Siemens Medical Solutions, Malvern, PA), Discovery MR 750 and Signa Excite 

(General Electric Healthcare, Waukesha, WI). The study was approved by the research 

ethics board of our institution, and written informed consent was obtained from all 

patients prior to enrolment. All 42 MR images were initially segmented manually by one 

observer (either a radiologist or a graduate student under advisement of a radiologist) 

followed by review and adjustment of the contours by an expert senior radiology resident 

with experience reading >100 prostate MRI scans. Two additional manual segmentations 

were performed on a subset of 10 images performed by two expert observers (one 

radiologist and one radiation oncologist). To select this subset of 10 images, we 

qualitatively assigned easy-, moderate- and difficult-to-segment labels to a set of images 

acquired at our institution and randomly select 10 images from all the three categories. 

The prostate volumes in the data set calculated based on the available manual 

segmentations ranged from 15 to 89 cm3 with mean ± standard deviation of 35 ± 14 cm3. 
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3.2.2 Automated segmentation 

Our automatic segmentation approach consists of two main parts: training and 

segmentation, described in sections 3.2.2.1 and 3.2.2.2, respectively. In this chapter, we 

focus on automation of the manual steps of our previously-published semi-automated 

method. Thus, we describe elements common to our automatic and semi-automatic 

approaches at a high level; full details on these elements are available in [17]. 

3.2.2.1 Training 

We use the approach to training described in reference [17] reporting on our semi-

automated segmentation method. The training method is described at a high-level here. 

During training, the algorithm learns the local appearance of the prostate border by 

extracting 36 locally defined circular mean intensity image patches, and generates a 2D 

statistical shape model for the prostate on each axial cross-section of the prostate. To 

extract the mean intensity image patches, we first spatially normalized all the prostates in 

the training set to define a spatial correspondence between axial slices of all the training 

images. For each slice in a set of corresponding axial slices, a set of 36 anatomically 

corresponding points was defined on the prostate border and for each point, a circular 

patch centered at that point was selected. By computing the average of the intensities of 

the corresponding pixels across all the patches obtained from the corresponding points, a 

set of 36 mean intensity patches were generated, each corresponding to one anatomical 

point on the prostate border. The 36 defined border points were also used for building a 

statistical point distribution model (PDM) of prostate shape on each selected axial cross-

section. 
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3.2.2.2 Segmentation 

To segment the prostate in a new MR image, the algorithm first coarsely localizes 

the region containing the prostate by automatically positioning a template shaped 

similarly to a prototypical prostate on the mid-sagittal plane (blue polygon in Figure 3.1). 

The algorithm then searches within a region defined according to this template to define 

the 3D prostate boundary. This high-level process resolves to a four-step procedure: (1) 

anterior rectal wall boundary determination, (2) inferior bladder boundary determination, 

(3) coarse prostate localization by template fitting, and (4) 3D prostate boundary 

localization. Each of these four steps is described in detail below. 

The first step was to fit a line to the anterior rectal wall boundary on the mid-

sagittal slice of the MRI. Candidate points lying on the anterior rectal wall boundary were 

selected by finding loci of minimum first derivative along line intensity profiles oriented 

parallel to the axial planes and running from anterior to posterior on the mid-sagittal 

plane. This approach was chosen due to the observation that the intensity generally 

transitions sharply from bright to dark at the rectal wall boundary. To reduce the search 

space, we restricted our search to a domain covering 50% of the width of the mid-sagittal 

plane in the anteroposterior direction, offset 20% from the posterior-most extent of the 

mid-sagittal plane. Within this domain, 10 equally-spaced lines (every second line) 

nearest to the mid-axial plane were searched. For robustness to outlier candidate points, 

we computed a least-trimmed squares fit [18] line to the candidate points, with the 

optimizer tuned to treat 40% of the candidate points as outliers. We took the resulting 

best-fit line to represent the anterior rectal boundary (posterior-most yellow dashed line 

in Figure 3.1). 
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The second step was to fit a curve to the inferior bladder boundary on the mid-

sagittal slice of the MRI. Candidate points lying on the inferior bladder boundary were 

selected by finding loci of minimum first derivative along line intensity profiles oriented 

parallel to the anterior rectal boundary determined in the previous step and running from 

superior to inferior on the mid-sagittal plane. This approach was chosen due to the 

observation that the intensity generally transitions sharply from bright to dark at the 

inferior bladder boundary. To reduce the search space we restricted our search to line 

segments lying within the superior half of the image, starting 5 mm anterior to the rectal 

wall with 2 mm spacing between them. We eliminated implausible candidate points in 

two stages. In the first stage, points forming a locally concave shape near the posterior 

side, inconsistent with anatomy of the inferior aspect of the bladder, were eliminated. In 

the second stage, we computed a least-trimmed squares fit [18] polynomial curve 

(second-order curve in the case of a point configuration yielding a convex shape; first-

order curve otherwise) to  the remaining candidate points, with the optimizer tuned to 

treat 20% of the candidate points as outliers. We took the resulting curve to represent the 

inferior bladder boundary (superior-most yellow dashed curve in Figure 3.1). 

The third step was to fit the prostate template (described by the dimensions shown 

in Figure 3.1) to the image using the anatomic boundaries found in the first and second 

steps. This was done by defining the dimensions of the template to match the 

anteroposterior (AP) and inferior-superior (IS) dimensions of the prostate on the test 

image; this information is readily available in every clinical case from the prostate 

ultrasound examination conducted prior to MRI. The template was then positioned 

parallel to and 3 mm anterior to the rectal wall line (along a line perpendicular to the 
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rectal wall line), inferior to the bladder boundary curve with a single point of contact 

between the bladder boundary and the template (Figure 3.1). 

The fourth and final step was to define the 3D surface of the prostate detected and 

localized by the template. After fitting the template to the image, we extract a set of three 

points (three blue crosses in Figure 3.1) from the template: the prostate centre points on 

(1) the apex-most slice, (2) the base-most slice, and (3) the midgland slice equidistant to 

the apex- and base-most slices. We then interpolate these three centre points using 

piecewise cubic interpolation to estimate the centre points for all of the axial slices 

between the apex and base. We then use the approach to prostate boundary localization 

described in reference [17] reporting on our semi-automated segmentation method. The 

approach is described at a high level here. For each slice, we oriented a set of 36 equally 

spaced rays emanating from the centre point, one corresponding to each of the learned 

mean intensity patches. For each ray we translated the corresponding mean intensity 

patch to find the point whose circular image patch has the highest normalized cross-

correlation with the corresponding mean intensity path. Shape regularization was 

performed within each slice using the corresponding PDM, followed by 3D shape 

regularization. Full details are available in [17]. 
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Figure 3.1: Automatic coarse localization of the prostate. The dashed line shows the 

estimated tangent line to the rectal wall. The dashed curve shows the estimated bladder 

border. The solid line polygon is the template used to select the centre points for apex, 

midgland and base. The prostate border based on manual segmentation has been overlaid 

in dotted line as a reference. AP and IS are ,respectively, anterioposterior and inferior-

superior dimensions of the prostate measured during routine clinical ultrasound imaging. 

The three indicated points on the template define the three estimated centre points for the 

prostate. 

3.2.3 Validation 

To evaluate the accuracy of the segmentation algorithm, we used complementary 

boundary-based, regional overlap-based, and volume-based metrics. This allows the user 

of the method to understand its applicability to a specific intended workflow. For 

instance, the use of this algorithm for planning whole-prostate radiation would increase 

the importance of low error in a boundary-based metric, whereas the use of the algorithm 

in a retrospective study correlating prostate size with clinical outcome would focus on 

accuracy of a volume-based metric. We used the MAD as the boundary-based error 

metric; the DSC, recall rate and precision rate as regional overlap-based error metrics; 
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and the volume difference (ΔV) metric to evaluate the automatic segmentation against 

manual segmentation. We measured the metrics in 3D for the whole prostate gland and 

also for the inferior-most third of the gland (corresponding to the apex region), the 

middle third of the gland (corresponding to the midgland region) and the superior-most 

third of the gland (corresponding to the base region). 

MAD measures the misalignment of two surfaces in 3D in terms of absolute 

Euclidean distance. To calculate the MAD in a unilateral fashion, the surface of each 

shape is defined as a set of points, with one of the two shapes designated as the reference. 

The MAD is the average of the absolute Euclidean distances between each point on the 

non-reference set to the closest point on the reference set. Specifically, 

 
𝑀𝐴𝐷(𝑋, 𝑌) =

1

𝑁
∑ min

𝑞∈𝑌
𝐷(𝑝, 𝑞)

𝑝∈𝑋

 , (3.1) 

where X and Y are the point sets (Y is the reference set), N is the number of points in X, p 

is a point in X, q is a point in Y, and D(p,q) is the Euclidean distance between p and q. 

The MAD is an oriented metric and is therefore not invariant to the choice of 

reference shape. This can be addressed by calculating the bilateral MAD, which is the 

average of the two unilateral MAD values calculated taking each shape as the 

reference.To calculate the DSC [12], recall rate and precision rate [17], we measured the 

volume overlap between the two 3D shapes. Figure 3.2 and equations (3.2), (3.3) and 

(3.4) define DSC, recall and precision, respectively. 

 
𝐷𝑆𝐶(𝑋, 𝑌) =

2(𝑋 ∩ 𝑌)

𝑋 + 𝑌
=

2𝑇𝑃

𝐹𝑃 + 2𝑇𝑃 + 𝐹𝑁
 (3.2) 

 
𝑅𝑒𝑐𝑎𝑙𝑙(𝑋, 𝑌) =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(3.3) 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑋, 𝑌) =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(3.4) 

We subtract the volume of the reference shape from the volume of the test shape 

to calculate the signed volume difference (ΔV) metric 

 ∆𝑉(𝑋, 𝑌) = 𝑉𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 − 𝑉𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  , (3.5) 

where Valgorithm and Vreference are the prostate volumes given by the segmentation algorithm 

and manual reference segmentation, respectively. Negative and positive values of ΔV 

indicate under-segmentation and over-segmentation, respectively. 

  

Figure 3.2: Elements used to calculated the DSC, recall, and precision validation metrics. 

X and Y are the two shapes, with Y taken as the reference shape. FP: false positive, TP: 

true positive, FN: false negative. 

3.3 Experiments 

For all of the experiments in this chapter, all algorithm parameters were tuned 

identically to those used in reference [17] to allow for direct comparison of the results. 

3.3.1 Comparison of automatic and semi-automatic segmentation: accuracy 

and time 

We ran the automatic segmentation algorithm on our data set of 42 3D images and 

compared the results to a single manual reference segmentation using leave-one-patient-

Y(reference)X

(TP)
FP FN
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out cross validation. We compared each segmentation result against the reference using 

our five error metrics on the four ROIs; the whole gland, apex, midgland and base 

regions. We applied one-tailed heteroscedastic t-tests [19] to compare the performance of 

the automatic segmentation to the semi-automatic segmentation. We measured the 

average execution time for the automatic segmentation approach across the 42 images 

and compared it to the average of semi-automatic execution time across the same data set 

and identical running conditions, using a one-tailed t-test. 

3.3.2 Comparison of automatic and semi-automatic segmentation versus 

inter-operator variability in manual segmentation 

We ran the automatic algorithm on the subset of 10 images for which we had 

three manual reference segmentations. For comparison, we also applied our semi-

automatic algorithm [17] to the same data set using nine different operators (four 

radiation oncologists, one radiologist, one senior radiology resident, one imaging 

scientist, and two graduate students, all with clinical and/or research experience with 

prostate imaging). We used the remaining 32 images for training both algorithms. We 

compared each segmentation result against the manual reference segmentations using our 

five error metrics on the four ROIs; the whole gland, apex, midgland and base regions. 

For the automatic segmentation method, we calculated the mean and standard 

deviation of each metric for each ROI across all 10 images and three references, defined 

as 

 

ℳ̅𝑀𝑒𝑡𝑟𝑖𝑐
𝑎 =

1

𝑀 × 𝐾
∑ ∑ 𝑀𝑒𝑡𝑟𝑖𝑐(𝐿𝑖

𝑎, 𝐿𝑖
𝑘)

𝐾

𝑗=1

𝑀

𝑖=1

 and (3.6) 



www.manaraa.com

106 

 

 

𝜎𝑀𝑒𝑡𝑟𝑖𝑐
𝑎 = √

1

(𝑀 × 𝐾 − 1)
∑ ∑[𝑀𝑒𝑡𝑟𝑖𝑐(𝐿𝑖

𝑎 , 𝐿𝑖
𝑘) − ℳ̅1

𝑎]
2

𝐾

𝑗=1

𝑀

𝑖=1

, 

(3.7) 

where 𝑀𝑒𝑡𝑟𝑖𝑐 is a function computing any one of the five metrics (e.g. MAD); ℳ̅𝑀𝑒𝑡𝑟𝑖𝑐
𝑎  

is the mean value of the metric for automatic segmentation across all the images and all 

the references; 𝜎ℳ1
𝑎  is the standard deviation of the metric; M=10 and K=3 are the 

number of images and references, respectively; 𝐿𝑖
𝑘is the manual segmentation by the kth 

operator on the ith image; and 𝐿𝑖
𝑎is the automatic segmentation on the ith image. For the 

semi-automatic segmentation, we calculated the mean and standard deviation of each 

metric for each ROI across all 10 images, three references and nine operators, defined as 

 

ℳ̅𝑀𝑒𝑡𝑟𝑖𝑐
𝑠 =

1

𝑀 × 𝑁 × 𝐾
∑ ∑ ∑ 𝑀𝑒𝑡𝑟𝑖𝑐(𝐿𝑖

𝑠𝑗
, 𝐿𝑖

𝑘)

𝐾

𝑘=1

𝑁

𝑗=1

𝑀

𝑖=1

 and (3.8) 

 

𝜎𝑀𝑒𝑡𝑟𝑖𝑐
𝑠 = √

1

(𝑀 × 𝑁 × 𝐾 − 1)
∑ ∑ ∑[𝑀𝑒𝑡𝑟𝑖𝑐(𝐿𝑖

𝑠𝑗
, 𝐿𝑖

𝑘) − ℳ̅1
𝑠]

2
𝐾

𝑘=1

𝑁

𝑗=1

𝑀

𝑖=1

, 

(3.9) 

where ℳ̅𝑀𝑒𝑡𝑟𝑖𝑐
𝑠  is the mean value of the metric across all the semi-automatic labels, all 

the images and all the references; 𝜎ℳ1
𝑠  is the standard deviation of the metric; N=9 is the 

number of operators; and 𝐿𝑖
𝑠𝑗

is the semi-automatic segmentation by the jth operator on the 

ith image. 

We used Simultaneous Truth and Performance Level Estimation (STAPLE) [20] 

to generate one reference segmentation from each triplet of manual segmentations 

performed on each image. We then computed ℳ̅𝑀𝑒𝑡𝑟𝑖𝑐
𝑎  and  ℳ̅𝑀𝑒𝑡𝑟𝑖𝑐

𝑠  using the STAPLE 

reference exactly as in Equations (3.6)–(3.9), with 𝐾 = 1 (reflecting the use of a single 

STAPLE reference rather than 3 manual references). 
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We compared the semi-automatic and automatic approaches separately for both 

explained scenarios (three manual references and single STAPLE reference) using one-

tailed heteroscedastic t-tests. We defined the range of mean values of each metric 

(𝐵𝑀𝑒𝑡𝑟𝑖𝑐
𝐿  𝑡𝑜 𝐵𝑀𝑒𝑡𝑟𝑖𝑐

𝐻 ) when we compared three manual segmentations pairwise  reported in 

[17] as follows: 

 𝐵𝑀𝑒𝑡𝑟𝑖𝑐
𝐿 = min

𝑚,𝑛
ℳ̅𝑀𝑒𝑡𝑟𝑖𝑐

𝑚,𝑛  and (3.10) 

 𝐵𝑀𝑒𝑡𝑟𝑖𝑐
𝐻 = max

𝑚,𝑛
ℳ̅𝑀𝑒𝑡𝑟𝑖𝑐

𝑚,𝑛 , (3.11) 

Where 

 

ℳ̅𝑀𝑒𝑡𝑟𝑖𝑐
𝑚,𝑛 =

1

𝑀
∑ 𝑀𝑒𝑡𝑟𝑖𝑐(𝐿𝑖

𝑚, 𝐿𝑖
𝑛) and

𝑀

𝑖=1

 (3.12) 

𝐿𝑖
𝑚 and 𝐿𝑖

𝑛 are the manual segmentations for ith image by observers m and n, respectively. 

Wecompared the mean metric values for semi-automatic and automatic segmentation 

(ℳ̅𝑀𝑒𝑡𝑟𝑖𝑐
𝑎  and  ℳ̅𝑀𝑒𝑡𝑟𝑖𝑐

𝑠 ) to this range. If the average of a metric at one ROI is within this 

manual segmentation variability range or even the observed average error is below the 

range, we took it into account as an improvement in accuracy and variability of the 

algorithms compared to manual segmentation. 

3.4 Results 

3.4.1 Comparison of automatic and semi-automatic segmentation: accuracy 

and time 

The results in this section address research questions (1), (2), and (3) as described 

in the introduction. Table 3.1 shows our automatic segmentation accuracy on 42 T2w MR 

images against one manual reference segmentation. The results of the t-tests (with 
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α=0.05) showed that using the automatic algorithm significantly increased the error in 

terms of MAD and DSC in all the ROIs. Recall rates significantly decreased for the 

whole gland, apex and midgland and significantly increased for the base when we used 

the automatic segmentation algorithm. The precision rate also showed more error within 

the whole gland, midgland and base. No significant changes were detected within the 

apex in terms of the precision rate. We did not detect a significant increase in error for the 

whole gland and midgland in terms of ΔV. The absolute value of ΔV was significantly 

increased within the apex and significantly decreased within the base. 

The mean ± standard deviation execution time using an unoptimized MATLAB 

platform on a single CPU core for coarse prostate localization was 3.2 ± 2.1 sec. and for 

3D segmentation was 54 ± 13 sec. 

Table 3.1: Accuracy of automatic segmentation: mean ± standard deviation of MAD, 

DSC, recall, precision, and ΔV. § and * show statistically significant accuracy gain and 

loss, respectively, when compared to the results of semi-automatic segmentation in [17] 

(p < 0.05). 

Region of 

Interest 

MAD 

(mm) 

DSC 

(%) 

Recall 

(%) 

Precision 

(%) 

ΔV 

(cm3) 

Whole Gland 3.2 ± 1.2* 71 ±  11* 69 ±  15* 76 ±  12* -3.6 ± 10.4 

Apex 2.8 ± 1.3* 66 ±  15* 62 ±  23* 81 ±  17 -3.3 ± 5.1* 

Midgland 2.8 ± 1.1* 82 ±   9* 82 ±  15* 84 ±  10* -0.5 ± 3.6 

Base 3.8 ± 1.7* 64 ±  15* 71 ±  21§ 69 ±  22* 0.2 ± 7.5§ 

3.4.2 Comparison of automatic and semi-automatic segmentation versus 

inter-operator variability in manual segmentation 

The results in this section address research question (4) as described in the 

introduction. In this experiment, the key result was that the accuracy of semi-automatic 

and automatic segmentation algorithms approaches the observed inter-operator variability 

range in manual segmentation. Figure 3.3 shows the mean ± standard deviation of the 
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five metric values for each ROI for semi-automatic and automatic segmentation 

algorithms, compared with the range of the mean of each metric within each ROI in pair-

wise comparison of the three manual reference segmentations. Figure 3.4 shows the mean 

± standard deviation values for the five metrics for each region of interest for semi-

automatic and automatic segmentation algorithms in comparison with STAPLE reference 

segmentations. We overlaid the results of each metric lower and upper bounds at each 

ROI in comparison of the three manual reference segmentations against STAPLE 

reference using dashed lines. Note that in both Figure 3.3 and Figure 3.4 if the metric 

value for each algorithm located within the range or at the lower error side it means that 

the algorithm accuracy reached the observed inter-expert observer variation in manual 

segmentation, and if the metric value located beyond the higher error bound that means 

there could be still room for improvement of the algorithm accuracy. As these figures 

show depends on the metric and ROI each of the algorithms might have outperformed the 

other. In terms of some of the metrics at some of the ROIs no statistically significant 

difference were detected between semi-automatic and automatic algorithms. 
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Figure 3.3: Accuracy of the computer-based segmentations vs. inter-operator variability 

of manual segmentation. The average accuracy of one set of 10 automatic and nine sets of 

10 semi-automatic segmentations in comparison with three manual reference 

segmentations in terms of (a) MAD, (b) DSC, (c) recall, (d) precision and (e) ΔV. The 

dashed line segments show the observed range of each metric at each ROI in pair-wise 

comparison between three manual segmentations. For ΔV, the ranges are based on the 

absolute value of ΔV due to lack of reference in comparison of two manual 

segmentations. The significant differences detected between semi-automatic and 

automatic segmentation at different ROIs have been indicated on the graphs (p-value < 

0.05). 
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Figure 3.4: Accuracy of the computer-based segmentations vs. inter-operator variability 

of manual segmentation. The average accuracy of one set of 10 automatic and nine sets of 

10 semi-automatic segmentations in comparison with STAPLE reference segmentation in 

terms of (a) MAD, (b) DSC, (c) recall, (d) precision and (e) ΔV. The dashed line 

segments show the observed range of each metric at each ROI in comparison between 

three manual segmentations and STAPLE reference. The significant differences detected 

between semi-automatic and automatic segmentation at different ROIs have been 

indicated on the graphs (p-value < 0.05). 
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3.5 Discussion 

In this work, we measured the segmentation accuracy gained or lost when using a 

fully-automatic version of a previously-published semi-automatic segmentation 

algorithm. Such comparisons are routinely performed in the literature, often using a small 

number of validation metrics and a single-observer reference standard. In this work, we 

extended our analysis beyond this traditional approach to include a comparison of the 

algorithm performance differences to inter-observer variability in segmentation error 

metrics resulting from different expert manual segmentations. Measuring performance 

differences between algorithms – those presented in this chapter or in other literature – in 

the context of expert manual segmentation variability is important to understanding the 

practical importance of algorithm performance differences. 

3.5.1 Comparison of automatic and semi-automatic segmentation: accuracy 

and time 

For comparison to our previous results and other published work, we conducted 

an experiment using a single manual reference segmentation to measure the accuracy of 

our automatic algorithm. In terms of most of the metrics, there was a statistically 

significant difference between automatic and semi-automatic segmentation errors. On 

average, by switching from semi-automatic segmentation to automatic segmentation, 

MAD increases by 1.2 mm, DSC decreases by 11%, recall decreases by 8%, precision 

decreases by 12%, and the error in prostate volume decreases by 1 cm3 for the whole 

gland. According to the results based on our multi-reference and/or multi-operator 

experiments (Figure 3.3), the absolute value of the average ΔV based on automatic 
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segmentation on whole gland significantly decreased from approximately 7 cm3 to less 

than 1 cm3. This illustrates the complementary nature of the validation metrics and the 

varying utility of different segmentations for different purposes. Whereas the automatic 

segmentations may be less preferable to the semi-automatic segmentations for therapy 

planning, the automatic segmentations may be preferable for correlative studies involving 

prostate volume and clinical outcomes. 

The nature of the data set used in PROMISE12 challenge is different from our 

data set in terms of the consistent use of the an ER coil for MRI acquisition; our data set 

contained only images acquired using the ER coil, whereas the PROMISE12 data set 

contained a some with and some without the ER coil. However if we compare our results 

in Table 3.1 to the published results in [16] where applicable, our results are within the 

range of the metric values reported for the PROMISE12 challenge. 

In the semi-automatic approach, the operator provided coarse prostate 

localization, whereas in the automatic approach, this was done entirely by the algorithm. 

To compare the time required for this step in both contexts, the mean measured operator 

interaction time for semi-automatic segmentation was approximately 30 seconds [17], 

whereas the mean measured time required for automatic coarse prostate localization was 

measured in this study to be approximately 3 seconds using unoptimized MATLAB code 

on a single CPU core. 
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3.5.2 Comparison of automatic and semi-automatic segmentation versus 

inter-operator variability in manual segmentation 

The measured accuracy differences between the automatic and semi-automatic 

approaches are nearly always smaller than the measured differences between manual 

observer contours (differences between gray and black bars versus differences between 

dashed lines on Figure 3.3), and also smaller than the measured differences between 

manual observer contours and a STAPLE consensus contour (Figure 3.4). This suggests 

that the performance differences measured between these two algorithms may be less 

than the differences we would expect when comparing different observers’ manual 

contours. 

We observe that the top of the dark gray bar corresponding to the MAD metric in 

Figure 3.3 for the whole gland lies within the range of variability between expert 

observers’ manual contours. This indicates that on average, the semi-automatic 

segmentation algorithm’s whole-gland segmentation accuracy, as measured by MAD, is 

within the range of human expert variability in manual contouring. This means that 

further investment of engineering efforts to improve this metric for this algorithm may 

not be beneficial to the ultimate clinical workflow, since the algorithm’s error is already 

smaller than the difference that might be observed between expert observers’ manual 

contours. The fact that the top of the light gray bar in the same part of the figure lies 

higher than the range given by the dashed lines indicates that this is not the case for the 

fully automatic algorithm; further accuracy improvement in terms of MAD on the whole 

gland may be warranted, with the caveat that such improvement must be measured using 

a multi-observer reference standard. Inter-observer variability in manual segmentation 
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would likely mask small improvements in the MAD; this is evidenced by the size of the 

gap between the dashed lines (1.8 mm), compared to the 0.6 mm improvement in the 

MAD that would be necessary to yield equal performance to the semi-automatic 

algorithm. We observe in Figure 3.3 that for the MAD, DSC, precision, and ΔV metrics, 

algorithm performance is near or within the range of human expert variability; this is the 

case more often for the semi-automatic algorithm. The performance of the algorithms in 

terms of the recall metric suggest that overall, both algorithms tend to undersegment the 

prostate to an extent where there is practically important room for improvement. This is 

especially true for the base region of the prostate. Interestingly, in terms of the recall 

metric, the automatic algorithm had statistically significantly better performance than the 

semi-automatic algorithm for every anatomic region except for the apex, with 

substantially better performance in the base region. This is concordant with our 

observations [17] of large inter-observer variability in determining the slice location of 

the base during initialization of the semi-automated algorithm; determining where the 

prostate base ends and the bladder neck begins is a challenging task even for expert 

physicians. The observations made in Figure 3.4, where the range of observer variability 

relative to a STAPLE reference are shown, are generally concordant with observations 

made on Figure 3.3. 

Taken as a whole, these observations highlight the value of measuring inter-

observer variability in manual segmentation, using complementary segmentation error 

metrics, and measuring segmentation error in different anatomic regions known to pose 

varying levels of challenge to expert operators and automated algorithms. Analysis of 

these quantities as performed above allows us to determine the best ways to focus further 
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engineering efforts to improve automated segmentation algorithms. A clinical end user 

can identify the segmentation error metrics of greatest relevance to the user’s intended 

application of the algorithm and use the plots in Figure 3.3 to determine whether a 

particular algorithm’s accuracy in terms of those metrics is within the range of human 

expert variability in manual segmentation. If so, the algorithm is ready to be moved 

forward for full retrospective validation and then prospective testing within the intended 

clinical workflow. If the analysis shows there is room for improvement to bring the 

algorithm within the range of human performance for one or more anatomic regions, 

further engineering efforts can be specifically focused accordingly. We anticipate that 

this form of segmentation performance analysis will enrich future studies of automated 

segmentation algorithms intended for use on the prostate and other anatomic structures, 

enabling a means for determining the point at which an algorithm is ready to move 

forward from bench testing toward clinical translation. 

3.5.3 Limitations 

The results of our work should be considered in the context of its strengths and 

limitations. First, although the automatic segmentation algorithm does not require any 

user interaction with the images, it does depend on the IS and AP dimensions of the 

prostate as determined on the routine clinical ultrasound imaging that is performed as part 

of guided biopsy before any MRI study would be conducted. In this study, the IS and AP 

dimensions taken from manual MRI prostate segmentation were used as surrogates for 

the measurements that would be taken during clinical ultrasound, and the performance 

sensitivity of the automatic segmentation method to these measurements was not 

determined. Second, our 3D segmentation algorithm requires the AP symmetry axis of 
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the prostate for orientation information. Since during MRI acquisition the scanner 

operator aligns the midsagittal plane of the scan to the midsagittal plane of the prostate 

using localizer scans, we assumed that the AP symmetry axis of the prostate gland is 

oriented parallel to AP axis of the image and assumed that all three prostate centre points 

(at the apex, mid-gland and base) are located on the mid-sagittal plane of the image. 

These assumptions are supported by our observations that segmentation algorithm is 

robust to perturbations of the AP symmetry axis and centre point selection [17] but 

nevertheless we felt it important to acknowledge these assumptions. Third, the small size 

of our data set (42 single-reference images and 10 multi-reference images) limits the 

strength of the conclusions of our work. Finally, we used MR image intensity as the only 

image feature for prostate border detection and we did not use other image-derived 

features such as image texture. Using other features might add complexity to the method 

and may make the algorithm slower, however it could improve the accuracy of the 

segmentation. Moreover, to have a more reliable assessment on the segmentation 

algorithm, we still need to study the effects of post-segmentation manual editing on 

prostate segmentation time, accuracy and reproducibility; this is the subject of our 

ongoing work. 

3.5.4 Conclusions 

In this work, we described an automatic 3D prostate segmentation method 

intended for use on T2w prostate MRI acquired using an endorectal receive coil. We 

compared it to a semi-automated algorithm using complementary error metrics separately 

in the apex, mid-gland, and base. We evaluated the algorithms’ accuracies in the context 

of expert variability in manual segmentation. We addressed four key research questions 
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described in the introduction section of this chapter, the answers to which are enumerated 

accordingly here. (1) When compared to a single-observer reference standard, the 

automatic algorithm has an average MAD of 2.8 mm, DSC of 82%, recall of 82%, 

precision of 84%, and volume difference of 0.5 cm3 in the mid-gland. Concordant with 

results from other published algorithms, accuracy was highest in the mid-gland and lower 

in the apex and base regions of the prostate. (2) The use of the automated algorithm 

eliminated the need for 30 seconds of user interaction to perform coarse localization of 

each prostate, replacing this step with a fully automatic approach requiring no user 

interaction and needing 3 seconds of computation time. (3) The automatic algorithm’s 

accuracy did not differ from the semi-automatic algorithm’s accuracy by more than 1 mm 

in terms of MAD; 5% in terms of DSC, precision, and recall; and 8 cm3 in terms of 

volume. The differences between the automatic and semi-automatic segmentation error 

metrics were consistently smaller than the differences observed between manual contours 

performed by experts. (4) The segmentation error metric values were near to or within the 

range of expert manual segmentation variability for all but the recall metric, especially in 

the prostatic base. This suggests that for our algorithms, engineering efforts should be 

focused on further improvement of the segmentation of the base, which is challenging 

even for human experts. The analysis approach taken in this chapter provides a means for 

determining the readiness of a segmentation algorithm for translation toward clinical trial 

for a specific purpose, and for focusing further engineering efforts on the most practically 

relevant performance issues, supporting eventual achievement of clinical translation. 
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Chapter 4. 

  

Impact of physician editing on repeatability and time 

for manual and computer-assisted prostate 

segmentation on magnetic resonance imaging † 

 

4.1 Introduction 

In 2014, prostate cancer (PCa) was one of the most commonly diagnosed types of 

cancer and the second leading cause of death from cancer among men in North America 

[1, 2]. Due to its high soft tissue contrast, magnetic resonance (MR) imaging (MRI) has 

demonstrated potential for detection, localization and staging of PCa [3-6] and therefore 

in several centers MRI is being used for PCa diagnosis, treatment planning and therapy 

guidance [3, 6-8]. Using an endorectal receiver (ER) coil during MRI acquisition yields 

images with higher resolution and improved signal-to-noise ratio, with reported positive 

impact on PCa diagnosis [7, 9, 10]. 

Delineation of the prostate capsule on MRI is required for several clinical 

procedures in which MR images are employed. T2-weighted (T2w) prostate MRI plays 

an important role in anatomy description [11, 12], PCa detection and localization [13], 

and therefore, prostate contouring is usually performed on T2w MRI. However, three-

                                                 
† A version of this chapter is in preparation for submission: M. Shahedi, D. W. Cool, C. Romagnoli, 

G. S. Bauman, M. Bastian-Jordan, G. Rodrigues, B. Ahmad, M. Lock, A. Fenster, and A. D. Ward, " 

Impact of physician editing on repeatability and time for manual and computer-assisted prostate 

segmentation on magnetic resonance imaging," (in preparation). 



www.manaraa.com

122 

 

dimensional (3D) manual prostate contour delineation is laborious and time-consuming, 

and subject to substantial inter-operator variability [14]. 

Several algorithms have been presented in the literature for 3D segmentation of 

the prostate on T2w MRI, as described in a recent survey [15]. However, a minority of 

these methods have been validated for use on T2w MRI acquired using an ER coil 

(henceforth referred to as ER MRI). Although ER MRI can improve PCa detection, its 

improved contrast results in the presence of additional high-frequency details in the 

images. This makes automatic segmentation more challenging, especially for algorithms 

designed for use on non-ER MRI where the intraprostatic signal is more homogeneous. 

Furthermore, the ER coil deforms and displaces the prostate gland and produces MRI 

artifacts [16] that further challenge automatic segmentation. We have previously reported 

on semi-automatic [17] and automatic (Chapter 3) segmentation algorithms developed in 

our laboratory. Full details are available in the original publications; we describe details 

relevant to this study here. These methods are based on prostate shape and appearance 

models learned from a training set. Segmentation is performed in two steps: coarse 

localization of the prostate, followed by 3D segmentation boundary detection and 

refinement. In the semi-automated approach, coarse localization is performed by the 

operator with four mouse clicks requiring approximately 30 seconds of user interaction 

time. In the automated approach, coarse localization is performed automatically within 3 

seconds of computation time, with no requirement for user interaction. 

A range of segmentation accuracy values has been reported in the literature for 

automated and semi-automated algorithms (Table 4.1). Typically, reported error metrics 

include the mean absolute distance (MAD) between the boundaries of the automatic and 
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manual segmentations, and/or the Dice similarity coefficient (DSC). Reported MAD 

values range from 1.5–3.4 mm [17-20], and reported DSC values range from 82%–91% 

[17-21]. Reasons for the range of different error values reported include algorithm design, 

the use of single-operator manual reference segmentations for validation in most studies, 

and the use of different imaging data sets. These differences notwithstanding, the errors 

yielded by state-of-the-art segmentation methods are asymptotically approaching the 

differences observed between human expert operators [14]. It is thus timely to shift the 

focus of research in this area to studies aimed at enabling clinical translation of these 

techniques so that they can be of benefit to those suffering from cancer. 

For reasons of diagnostic accuracy and patient safety, the integration of any 

computer-assisted segmentation algorithm, fully automatic or otherwise, into clinical use 

will require that an expert reviews and edits each segmentation as necessary before 

proceeding. This will always be necessary since regardless of the reported accuracy of a 

given segmentation algorithm, unusual cases will occur in the clinic that result in poor-

quality computer-assisted segmentations, with potentially disastrous consequences to the 

patient if such segmentations were used to guide treatment. Therefore, the clinical utility 

of a method will depend not only on its accuracy metric values, such as the MAD and 

DSC, determined on a testing data set, but also on the amount of editing deemed 

necessary by expert physicians in order to render the segmentation suitable for clinical 

use. This editing can be measured spatially using standard metrics such as MAD and 

DSC, to compare the segmentation as output by the algorithm to the segmentation after 

editing, and these metrics can be computed on anatomically distinct regions to learn 

about the portions of the prostate requiring the most editing. Potentially of even greater 
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importance, the amount of required editing time can be measured. For a segmentation 

algorithm to have clinical utility, it must allow the expert physician to obtain a 

segmentation deemed clinically acceptable by him/her in less time than would be 

required to perform a manual segmentation. This statement holds true regardless of the 

reported segmentation accuracy metrics (e.g. MAD, DSC) for an algorithm in the 

literature. To the best of our knowledge, questions of editing magnitude and time have 

not been extensively studied for ER MRI prostate segmentation algorithms reported in 

the literature. 

In this chapter, we conducted a user study to answer four research questions. (1) 

How much spatial segmentation editing do expert operators perform to obtain clinically 

useful segmentations?  (2) What is the inter-operator variability in segmentation?  (3) 

How much segmentation editing time do expert operators require to obtain clinically 

useful segmentations?  (4) Can the necessary time requirement for segmentation editing 

be predicted from spatial segmentation error metrics?  Questions (1), (2), and (3) were 

answered and compared under three conditions, where the segmentations provided to the 

operators for editing came from (a) our automatic segmentation algorithm, (b) our semi-

automatic segmentation algorithm, and (c) manual segmentation performed by another 

expert operator. As the scope of question (4) is limited to evaluation of computer-assisted 

segmentation algorithms, it was answered under conditions (a) and (b) only. 
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Table 4.1: Reported segmentation errors for prostate segmentation algorithms intended 

for use on T2w ER MRI. 

Algorithm Technique Data set size Accuracy Segmentation time 

Our semi-

automatic 

algorithm [17] 

(described in 
Chapter 2) 

Local appearance and 

shape model (semi-

automatic) 

42 

(test and 

training) 

Whole gland: 

MAD: 2.0 ± 0.5 mm 

DSC: 82% ± 4%  

Recall: 77% ± 9% 

Precision: 88% ± 6% 

ΔV: -4.6 ± 7.2 cm3 

Operator interaction: 
28 ± 14 sec. (across 

10 images and 9 

operators) 
Execution: 85 ± 20 

sec. (across 42 

images, one 
operator) 

Our automatic 

algorithm 

(described in 

Chapter 3) 

Local appearance and 

shape model (automatic) 

42 

(test and 
training) 

Whole gland: 

MAD: 3.2 ± 1.2 mm 

DSC: 71% ± 11%  

Recall: 69% ± 15% 

Precision: 76% ± 12% 

ΔV: -3.6 ± 10.4 cm3 

Execution: 54 ± 13 

sec. (across 42 
images) 

Cheng et al. [21] Atlas-based (automatic) 
100 
(training) and 

40 (test) 

Whole gland: 

TP: 91.2% 
DSC: 87.6% 

ΔV: 8.4% 

NA 

Liao et al. [18] 
Multi-atlas-based 

(automatic) 

66 (test) 

9 (atlas) 

Whole gland: 
MAD: 1.8 ± 0.9 mm 

DSC: 88% ± 3%  

Execution: 2.9 min. 

Toth and 

Madabhushi [19] 

Active appearance model 

(semi-automatic) 
108 

Whole gland: 
MAD: 1.5 ± 0.8 mm 

DSC: 88% ± 5%  

Execution: 150 sec. 

Vikal et al. [22] 
Shape model (semi-
automatic) 

3 Has not reported for whole gland Execution: 23 sec. 

Martin et al. [20] 
Atlas-based (semi-
automatic) 

1 (reference) 
17 (test) 

Whole gland: 

MAD: 3.4 ± 2.0 mm 

Recall: 89% ± 6% 

Precision: 78% ± 12% 

NA 

MAD: mean absolute distance, DSC: Dice similarity coefficient, ΔV: Volume difference, TP: true positive 

4.2 Materials and Methods 

4.2.1 Materials 

Our sample consisted of 10 axial T2w fast spin echo ER MRI acquired at 3.0 

Tesla field strength, all from patients with biopsy-confirmed PCa. Images were acquired 

with TR = 4000–13000 ms, TE 156–164 ms, NEX = 2. The voxel sizes were 0.27 × 0.27 

× 2.2 mm as is typically seen in clinical prostate MRI. The images were acquired using a 

Discovery MR750 (General Electric Healthcare, Waukesha, WI). The study was 

approved by the research ethics board of our institution, and written informed consent 

was obtained from all patients prior to enrolment. All 10 MR images were segmented 

manually by three operators: one radiologist, one radiation oncologist and an expert 
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radiology resident with >3 years’ experience reading >100 prostate MRI studies in 

tandem with a board-certified radiologist as part of a trial conducted at our centre. Editing 

was conducted by four radiation oncologists with genitourinary specialization and the 

same expert radiology resident. The ITK-SNAP software tool [23] was used for manual 

segmentation. 

  

Figure 4.1: Study design showing the workflow for a particular operator #i. The operator 

edited three sets of segmentations: five automatic segmentations, five semi-automatic 

segmentations performed by the operator, and five semi-automatic segmentations 

performed by a different operator #j. Spatial and temporal segmentation metrics were 

collected to measure the editing task and compared across the three conditions. 

4.2.2 Study design 

Our study design is shown in Figure 4.1. Each operator #i edited a total of 15 

segmentations under three conditions: (a) five automatic segmentations, (b) five semi-

automatic segmentations performed based on the operator’s own inputs as the semi-

automatic segmentation algorithm operator, and (c) five manual segmentations performed 

by a different expert operator #j. Operator #j was the same individual throughout the 

T2w MRI
(n = 10)

T2w MRI
(n = 5)

T2w MRI
(n = 5)

Condition (a): 
Auto seg

(operator N/A)

Condition (b): 
Semiauto seg
(operator i)

Condition (c): 
Manual seg

(operator j ≠ i)

Editing
(operator i)

Editing
(operator i)

Editing
(operator i)

Editing metrics
(auto seg)

Editing metrics
(semiauto seg)

Editing metrics
(manual seg)

Comparison of spatial and temporal metrics
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entire experiment; operator #j only provided manual reference segmentations and did not 

take part in this editing study in any other way. Editing was performed in slice-by slice 

mode using the ITK-SNAP interface on axially-oriented slices. Changes were applied 

only on the axial slices but sagittal and coronal views were also provided to the operator 

during editing, so the operator could check for spatial coherence of the segmentations in 

these views. The operators used the adjustable-size paint brush tool in ITK-SNAP to 

add/remove area to/from the segmentation labels. They were able to adjust window and 

level and zoom in and out during editing. Spatial and temporal metrics were collected for 

each of the three conditions to compare the editing that was performed within each 

operator and between operators. To enable direct comparison of the editing of the 

automatic and semi-automatic segmentations, we used the same subset of 5 MRI scans 

for each operator for these two conditions. To mitigate possible effects of the order of 

MRI scan presentation on the experiment, the 15 segmentations were presented in a 

different randomized order for each operator, with a constraint that between any two 

presentations of the same MRI scan to the operator (i.e. once for automatic segmentation, 

and again with the same scan for semi-automatic segmentation), there were at least six 

MRI scans from other patients presented. 

4.2.3 Spatial editing magnitude and inter-operator variability 

We compared the pre-editing segmentations to the post-editing segmentations in 

each of the three conditions shown in Figure 4.1, answering research question (1). We 

used five different metrics, including MAD, DSC, recall, precision and volume difference 

(ΔV), to perform comparisons in terms of surface disagreement, regional misalignment 
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and volume difference. Where applicable, the post-editing segmentation was defined as 

the reference segmentation. These metrics are defined in detail below. 

4.2.3.1 Mean absolute distance 

The MAD metric measures the disagreement between two 3D surfaces as the 

average of a set of Euclidean distances between corresponding surface points of two 

shapes. For each point on one surface, the closest point on the other surface is defined as 

the corresponding point. Equation (4.1) shows the MAD of X and Y as two surface point 

sets, where D(p,q) is the Euclidean distance between points p and q. A MAD of zero 

indicates ideal agreement between two shapes. 

 
𝑀𝐴𝐷(𝑋, 𝑌) =

1

𝑁
∑ min

𝑞∈𝑌
𝐷(𝑝, 𝑞)

𝑝∈𝑋

 (4.1) 

The MAD calculation needs to consider one of the shapes as the reference (e.g. 

point set Y is the reference in equation (4.1). Therefore, when two segmentations are to be 

compared and there is no reference segmentation, we use the bilateral MAD which is the 

average of the two MAD values obtained using each segmentation as the reference. 

4.2.3.2 Dice similarity coefficient 

The DSC is a region-based metric that measures the proportion of the volume of 

the overlap region between two shapes and the average of their volumes in 3D (equation 

(4.2)). The DSC is a unitless metric and will be 100% in the case of ideal segmentation 

and 0 when there is no overlap. 
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4.2.3.3 Recall and precision rates 

Recall (or sensitivity) and precision are also unitless error metrics that measure 

the regional misalignment in terms of the overlap region with 100% and 0 as the ideal 

and worst-case measurement values, respectively. To calculate recall and precision, we 

need to consider one shape as the reference. Recall measures the proportion of the 

reference that is within the segmentation (equation (4.3)) and precision measures the 

proportion of the segmentation that is within the reference (equation (4.4)). 

 
𝐷𝑆𝐶(𝑋, 𝑌) =

2(𝑋 ∩ 𝑌)

𝑋 + 𝑌
=

2𝑇𝑃

𝐹𝑃 + 2𝑇𝑃 + 𝐹𝑁
× 100 , (4.2) 

 
𝑅𝑒𝑐𝑎𝑙𝑙(𝑋, 𝑌) =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100 , 

(4.3) 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑋, 𝑌) =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100 , 

(4.4) 

where TP is the true positive or correctly identified region, FP is the false positive or 

incorrectly identified region, and FN is the false negative or incorrectly ignored region 

(see Figure 3.2). 

4.2.3.4 Volume difference 

To calculate ΔV we subtract the reference shape volume from the segmentation 

shape volume. Therefore ΔV is a signed error metric; i.e. negative values of ΔV show 

that the segmentation is smaller than the reference and positive values of ΔV show that 

the segmentation is larger than the reference. 

To quantify inter-operator variability in segmentation and editing (answering 

research question (2)), we calculated simultaneous truth and performance level 

estimation (STAPLE) [24] consensus segmentations from the five operator segmentations 

before and after editing under all three conditions, with two exceptions. In the case of the 
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pre-editing automatic segmentations, no operators were involved, so no STAPLE 

segmentation was calculated. In the case of the pre-editing manual segmentations, only 

the segmentations of a single operator #j were edited in this study. To obtain a measure of 

inter-operator variability in pre-editing manual segmentations, we computed a STAPLE 

segmentation from manual segmentations performed by three of our operators on the 

same five images that were used for manual segmentation editing in our study. There 

were thus five sets, each containing five segmentations performed by different operators, 

with accompanying STAPLE consensus segmentation: (1) pre-editing semi-automatic, 

(2) post-editing semi-automatic, (3) post-editing automatic, (4) pre-editing manual, and 

(5) post-editing manual. Within each of these five sets, our five segmentation error 

metrics were computed to compare each operator’s segmentation to the corresponding 

STAPLE segmentation, with the means of the metric values indicating the amount of 

inter-operator variability. We used one-tailed pairwise heteroscedastic t-tests to test for 

statistical significance of differences in these inter-operator variability measurements 

between paired elements of the five sets. This allows us, for instance, to measure whether 

there is a statistically significant reduction of inter-operator variability in edited semi-

automatic segmentations, versus edited automatic segmentations. 

4.2.4 Required editing time and correlation with spatial error metrics 

For each label, we recorded the interaction time that was required to have a 

clinically acceptable segmentation using manual, semi-automatic and automatic 

segmentation methods, answering research question (3). We recorded the time from the 

moment when the operator began reviewing and editing the segmentation until the 

moment the operator verbally confirmed that the segmentation was ready to be used in 
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clinic. The editing time included browsing through the slices in the 3D volume, 

reviewing the segmentation, adding to and removing from the segmentation, window and 

level adjustment, editing tool selection and adjustment, and zooming in and out. For each 

of the three conditions, we calculated the mean and standard deviation of the interaction 

time across the five presented MRI scans separately for each operator, and also in 

aggregate across all five operators. For the semi-automatic algorithm we measured the 

interaction time required for algorithm operation and included this interaction time as part 

of the time required for the condition involving semi-automatic segmentation. 

We measured the degree to which measured spatial error metric values can be 

used as surrogates for the amount of editing time needed to achieve a segmentation that is 

satisfactory to the operator, answering research question (4). To do this, we calculated all 

five of our error metrics for the whole gland, apex, mid-gland, and base, comparing the 

pre-editing segmentation to the post-editing segmentation for the automatic and semi-

automatic segmentations (conditions 1 and 2 in Figure 4.1), using the post-editing 

segmentation as the reference where applicable. We measured the monotonicity of the 

relationship between each metric value and editing time using Spearman’s rank-order 

correlation (ρ). We tested the statistical significance of the correlation coefficients using 

the null hypothesis that there was no association between the error metric values and 

editing time values. For all tests, the sample size was 50 (10 images each contoured by 5 

operators). 
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4.3 Results 

4.3.1 Spatial editing magnitude and inter-operator variability 

Figure 4.4 shows the spatial magnitude of editing required for automatic, semi-

automatic, and manual segmentations for operators to achieve final edited segmentations 

suitable for clinical use. As might be expected, the general trend is that the automatic 

segmentations required the most editing, followed by the semi-automatic and manual 

segmentations. However, this trend was not reflected in all of the error metrics. For 

instance, looking at the DSC and recall metrics, we detected no significant difference in 

the amount of editing applied to the automatic vs. semi-automatic segmentations. 

Operator editing of manual segmentation consistently decreased segmentation volume 

without substantially affecting precision. This suggests that the manual pre-editing 

segmentations were deemed by the operators to be oversegmentations, and editing drew 

the boundaries inward by an amount reflected by the MAD metric values in Figure 4.4 

(MAD < 1 mm in general). Figure 4.3 shows the inter-operator variability in 

segmentation before and after editing, reported using the mean of each segmentation 

error metric across all operators for each image, with respect to a STAPLE reference 

standard. This analysis revealed significant differences in inter-operator variability for 

most of the conditions, for all metrics expect for the volume difference. Note the 

substantial inter-operator variability in manual segmentation (reflected by large mean 

metric values and large variability indicated by the whiskers) for many metrics, relative 

to the inter-operator variability in semi-automatic and automatic segmentations, even 

when manual editing is applied (e.g. compare the “manual-pre” measurements to the 

other measurements for the MAD metric in Figure 4.3). Overall, post-editing variability 
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is lower than pre-editing variability, with post-editing automatic and semi-automatic 

segmentations having similar variability. The MAD, DSC, and precision metrics revealed 

that editing reduced the amount of inter-operator variability for the semi-automatic 

segmentation condition (compare SA (pre) to SA (post) in Figure 4.3 for these three 

metrics). Interestingly, a similar pattern was observed for the manual segmentations. No 

significant differences were found between pre-editing manual segmentations and 

computer-assisted segmentations for any of the conditions or metrics. Post-editing 

automatic segmentation consistently demonstrated lower variability than pre-editing 

semi-automatic segmentation. No significant differences were found between post-

editing automatic segmentation and post-editing semi-automatic segmentation. 

Table 4.2: User manual interaction time for ready to use prostate segmentation in T2w 

MRI. 

Segmentation labels No. of images No. of Operators User interaction time  

Manual 5 5 213 ± 90 sec (3:33 ± 1:30 min) 

Semi-automatic 5 5 328 ± 126 sec (5:28 ± 2:06 min) 

Semi-automatic (user interaction time included) 5 5 351 ± 128 sec (5:51 ± 2:08 min) 

Automatic 5 5 393 ± 146 sec (6:33 ± 2:26 min) 
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Figure 4.2: User manual interaction time on manual, semi-automatic (S.A.) and 

automatic segmentations.The statistically significant differences indicated with * on the 

averages of the groups across all the five images (p < 0.05). 

4.3.2 Required editing time and correlation with spatial error metrics 

Table 4.2 shows the mean ± standard deviation of the recorded time required for 

each of the three conditions. For the semi-automatic condition, the time required only for 

editing, as well as the time required for editing plus the time required to interact with the 

semi-automated algorithm, are reported separately. Figure 4.2 shows the breakdown of 

these editing times for each image. Significant differences were found between editing 

times for all conditions, except when comparing automatic segmentation to semi-

automatic segmentation. To provide context for these editing times, according to the 

literature, the time required for manual prostate delineation on MRI can range from 

approximately 5 minutes [25] to approximately 20 minutes per patient [26], or about 1.6 

minutes for each 2D slice [27]. Our experience is concordant with this reported time 

range; timing of manual segmentation on the five images used in conditions (a) and (b) 
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for one expert operator yielded a mean ± standard deviation segmentation time of 564 ± 

162 sec (9:20 ± 2:42 min). Based on Table 4.2, we observe that operators spent 

approximately 2–3 additional minutes editing computer-assisted segmentations, 

compared to the amount of time spent editing manual segmentations performed by a 

different expert operator. 

4.3.3 Correlation of editing time with the metric values 

Table 4.3 shows the correlations between editing time and spatial editing 

magnitudes as measured using our segmentation error metrics. There were few significant 

correlations and none had magnitude > 0.5. Significant correlations were predominantly 

in the base of the gland. In the base, recall was positively correlated with editing time, 

and precision and volume difference were negatively correlated with editing time. This 

pattern was observed in the whole gland as well but only weakly in the mid-gland and not 

in the apex. 

Table 4.3: Correlation between editing time and spatial editing magnitude measured 

using five metrics. Each value is the Spearman’s correlation coefficient between the 

value of each error metric and editing time. The bold numbers indicate statistically 

significant correlations (p < 0.05) 

Anatomic region MAD DSC Recall Precision ΔV 

Whole gland 0.204 0.18 0.361 -0.341 0.417 

Apex 0.206 -0.081 -0.194 -0.138 0.092 

Mid-gland 0.263 -0.149 0.149 -0.282 0.312 

Base -0.14 0.367 0.428 -0.305 0.406 
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Figure 4.3: Inter-operator variability.  Each bar shows the average metric value for one 

image across five operators. The error bars indicate one standard deviation. The 

horizontal lines indicated statistically significant differences on the averages of the 

groups across all the five operators and five images (p < 0.05). SA: semi-automatic. 
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Figure 4.4: Editing magnitude, showing the differences between the segmentations pre- 

and post-editing for each of the three conditions.Each bar shows the average metric value 

for one image across five operators. The error bars indicate one standard deviation. The 

horizontal lines indicated statistically significant differences on the averages of the 

groups across all the five operators and five images (p < 0.05). 
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4.4 Discussion 

4.4.1 Spatial editing magnitude and inter-operator variability 

As shown in Figure 4.4, there was a nonzero difference between pre-editing and 

post-editing expert manual segmentations for all metrics. The amount of editing 

performed on the manual segmentations provides valuable perspective on the amount of 

editing performed on the automatic and semi-automatic segmentations. One might expect 

that improvements to computer-assisted segmentation algorithms would require amounts 

of editing asymptotically approaching the amounts of editing that operators deem 

necessary for expert manual segmentations provided by other experts (i.e. expert 

operators would elect to edit outputs from even an ideal computer-assisted segmentation 

algorithm). For studies of computer-assisted segmentation algorithms using single-

operator manual reference standard segmentations for validation, this observation is 

especially important; this suggests that algorithms yielding segmentation error metric 

values within the range observed in expert editing of manual expert segmentations could 

be considered to have essentially the same performance. For instance, Figure 4.4 would 

suggest that two algorithms reporting DSC values of 94% and 96% would be considered 

to perform equally, as these values are well within the range of manual editing of manual 

segmentations. This observation could have ramifications for the ranking schemes used 

for segmentation grand challenges (such as PROMISE12 [28]), suggesting a practical 

equivalence of some top-ranked algorithms and a potential means for deciding when top-

ranked algorithms are ready to be moved to the next stage of translation to clinical use. 

Although some metrics revealed a significant difference in the amount of editing required 

for automatic vs semi-automatic segmentations, this significance (and the magnitude of 
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the difference) varied across metrics. This observation emphasizes the need for multiple, 

complementary spatial metrics to comprehensively assess the performance of a 

segmentation algorithm. 

Our analysis in Figure 4.3 indicates that in general, allowing operators to edit 

provided segmentations reduces inter-operator variability in segmentation, compared to 

the inter-operator variability resulting from manual segmentations performed from 

scratch. The trend held even when comparing manual segmentations performed from 

scratch to manual segmentations that have been edited to satisfaction by another operator. 

This result underscores the value of providing operators with a starting segmentation for 

editing as this could improve the reproducibility of prostate segmentation, which is 

important for multi-operator clinical trials and consistency of patient care in clinical 

practice. Whereas the lowest inter-operator variability resulted from giving operators a 

starting segmentation performed manually by another expert, in clinical practice this is 

clearly impractical. From this perspective, the automatic segmentation could be seen as a 

practical alternative approach to obtain the starting segmentation. Although the difference 

in inter-operator variability between post-editing manual segmentations and post-editing 

automatic segmentations was statistically significant, inspection of Figure 4.3 reveals that 

this difference is very small from a practical perspective. This leads to the hypothesis that 

providing operators with an automatic segmentation with accuracy metric values similar 

to ours (Table 4.1) as a starting point will yield superior inter-operator reproducibility 

even after editing, compared to manual segmentations performed from scratch. This 

hypothesis needs to be tested in a larger study covering a broader range of segmentation 
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algorithms, a larger data set, and a larger pool of operators having different experience 

levels. 

4.4.2 Required editing time and correlation with spatial error metrics 

Our results suggest that the use of automatic or semi-automatic segmentation 

algorithms to provide a starting segmentation for editing should reduce the total amount 

of time required to achieve a clinically acceptable segmentation, relative to typical 

reported times required for manual segmentations performed from scratch. Our results 

also suggest that the difference in total time required to use our automatic vs semi-

automatic segmentation algorithms for this purpose is small, when the time required to 

interact with the semi-automatic segmentation algorithm is taken into account. Thus, the 

choice in this regard may come down to operator preference; the semi-automatic 

segmentation algorithm allows the operator to specify the apex-to-base extent of the 

prostate, reducing the need for editing involving adding or removing entire slices in these 

regions. This comes at the cost of needing to wait for < 60 seconds for the segmentation 

to be computed online, whereas the automatic segmentations can be computed offline 

immediately after MRI scanning and thus would appear instantaneously to the operator at 

time of editing. Our results also showed that operators spent more time editing the 

computer-assisted segmentations, compared to the time spent editing manual 

segmentations by another expert operator. We posit that this difference in editing time is 

an important metric for determining the suitability of a computer-assisted segmentation 

algorithm for translation to clinical use in scenarios where for safety or other reasons, 

expert operator verification for necessary editing will be performed on every 

segmentation. From this perspective, there is room for improvement in our semi-



www.manaraa.com

141 

 

automatic and automatic algorithms of approximately 2–3 minutes of editing time per 

prostate in order to achieve concordance with the amount of editing performed on manual 

segmentations. 

Table 4.3 indicates a consistent negative correlation of the precision metric value 

with editing time, with statistically significant correlations in all anatomic regions except 

for the apex. This implies that the greater the false positive area in a computer-assisted 

segmentation, the greater the time that will be required to edit the segmentation to a 

clinically acceptable level. This is corroborated by the consistent positive correlation with 

the volume difference metric (again, significant everywhere except the apex), implying 

that the greater the amount of oversegmentation performed by computer-assisted 

segmentation algorithm, the more editing time that will be required. Comparing the 

correlation coefficients for precision and volume difference within the apex, mid-gland, 

and base, the strongest correlations were found in the base region. This implies that the 

above relationships are especially applicable for false positive regions and 

oversegmentation of the base. However, based on these observations one could make 

only a weak recommendation that the amount of necessary editing time could be 

estimated based on the precision and volume difference spatial error metric values; 

although the correlation coefficients are statistically significant in many cases, they do 

not have high magnitude. 

The lack of strong correlations in Table 4.3 implies weak relationships between 

editing time and spatial editing magnitudes as measured by our segmentation error 

metrics. The observations in the previous paragraph notwithstanding, this implies that in 

general, one cannot use spatial metrics such as the MAD, DSC, precision, recall, and 



www.manaraa.com

142 

 

volume difference to estimate the amount of time that an operator will require to produce 

a clinically acceptable segmentations using the output of a segmentation algorithm as a 

starting point. This is an important observation since in most clinical workflows, time is a 

scarce and valuable resource; if it takes (nearly as) long to edit a segmentation from an 

algorithm as it does to perform a manual segmentation from scratch, the clinician may be 

inclined toward the simpler approach of performing manual segmentation. We surmise 

that this issue is a major contributor to the present state of affairs, where the academic 

literature has produced many hundreds of computer-assisted segmentation algorithms and 

yet very few of them have moved forward to clinical use. This leads to the conjecture that 

the most important metrics to compute when evaluating the suitability of an algorithm for 

clinical translation are operator variability, measured using spatial metrics such as MAD, 

DSC, etc., and editing time, measured directly using a sample of multiple operators. 

Viewed through this lens, the ideal segmentation algorithm would yield low operator 

variability and low editing time. This suggests that a potential reevaluation of the use 

spatial metrics for measuring segmentation accuracy may be in order, since in most 

practical clinical workflows, the final segmentation as edited and approved by the 

clinician will be used for its clinical purpose and could be considered 100% “accurate” 

for practical purposes. This observation supports engineers and computer scientists 

aiming for the concrete goal of producing a clinically useful segmentation in a minimum 

amount of time, in lieu of setting our aims according to the nebulous notion of accuracy, 

with all of its attendant issues (e.g. differing expert opinions on what constitutes a correct 

segmentation, issues regarding whether “gold standard” expert segmentations truly 

delineate the histologic boundary of the target of interest). 
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Comparing our algorithms to a hypothetical segmentation algorithm that 

demonstrated better performance based all five introduced error metrics in a multi-

operator and multi-reference study, and noting that no such algorithm has been reported 

in the literature due to a lack of comprehensive validation: 

(1) We expect that less editing of the segmentation results would be required, but 

not less than the amount of editing applied by an expert on to a manual segmentation 

provided by another expert. 

(2) Since there was not a big difference in terms of editing time measured for 

automatic and semi-automatic segmentation algorithms, and no strong correlation 

between segmentation error metric values and the required editing time, we cannot 

speculate as to whether this hypothetical algorithm would result in reduced editing time. 

(4) We acknowledge that our observed lack of correlation between spatial error 

metric values and editing time only applies to the range of spatial error metric values that 

we observed for our algorithms.  Such a correlation is possible for different error metric 

value ranges; e.g. containing the better metric values given by this hypothetical 

algorithm. 

4.4.3 Limitations 

This work must be considered in the context of its strengths and limitations. We 

acknowledge that given our image sample size and number of operators participating in 

the study, in some aspects, this is a descriptive, hypothesis-generating study that points 

the way to potentially fruitful studies on larger sample sizes with sufficient statistical 

power to draw firmer conclusions. We also acknowledge that although the editing 

interface we used, involving a mouse-driven variable-sized paintbrush tool, is concordant 
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it its mode of operation with the interfaces used in many clinical workflows, it does 

constitute only a single mode of performing segmentation editing. Thus, our study 

generates no knowledge about the impact of the choice of editing tool on editing times, 

and this would be a subject of valuable further study. Finally, in this user study we tested 

only two computer-assisted segmentation algorithms; a more comprehensive future study 

involving a broader cross-section of current algorithms is warranted. 

4.4.4 Conclusions 

In this chapter, we conducted a user study measuring the amount of spatial editing 

performed by expert users on segmentations generated manually, semi-automatically, and 

automatically. We measured the inter-operator variability in segmentation before and 

after editing, and measured the relationship between editing magnitude and time spent 

editing. With reference to the enumerated research questions in the introduction section 

of this chapter, we have reached four main conclusions, with the acknowledgment that 

our sample size implies that these conclusions should be considered as hypotheses to test 

in future, larger studies. (1) As would be expected, the operators performed the most 

spatial segmentation editing on the automatic segmentations, followed by the semi-

automatic segmentations, and the least amount of editing on the manual segmentations. 

The measured editing magnitudes varied according to the error metric used, reinforcing 

the value of using multiple, complementary error metrics in segmentation studies, rather 

than focusing on one or two typically used metrics (e.g. the MAD and DSC). (2) 

Providing operators with a starting segmentation for editing, either performed manually 

by another operator or (semi-)automatically via an algorithm, yielded lower inter-

operator variability in the final segmentation, compared to inter-operator variability in 
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manual segmentations performed from scratch (as is frequently performed in clinical 

workflows currently). Inter-operator variability resulting from using our automatic 

algorithm to generate starting segmentations was not substantially higher than that 

resulting from using expert manual segmentations as starting segmentations, suggesting a 

role for our automated segmentation algorithm in this context. (3) The use of our 

automatic or semi-automatic segmentation algorithms to generate starting segmentations 

for editing is expected to decrease the total required segmentation time, compared to the 

time required to perform manual segmentations from scratch, and the choice of automatic 

vs. semi-automatic segmentation for this purpose comes down to operator preference. (4) 

The necessary time requirement for segmentation editing cannot be reliably predicted 

from spatial segmentation error metrics in all anatomic regions of the prostate. Thus, for 

the many clinical workflows where manual segmentation review and editing will be 

performed for safety and other reasons, and minimization of editing time is a primary 

goal, the fact that one algorithm outperforms another in terms of spatial metrics such as 

the MAD and DSC does not imply that the algorithm is more suitable for clinical 

translation. In such contexts, where the medical expert’s final edited segmentation is 

taken as correct for practical purposes, the ideal segmentation algorithm supports the 

expert’s obtaining of a clinically acceptable segmentation in a minimum amount of time 

while minimizing inter-operator segmentation variability. This increases the volume of 

patients that can be treated and simultaneously supports consistent quality of the 

intervention patients receive. 
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Chapter 5. 

  

Conclusions and directions for future work 

5.1 Conclusions 

The work in this thesis has resulted in the following advances in technology and 

knowledge, enumerated according to the objectives given in Section 1.9: 

1. Chapter 2 described a novel system for semi-automatic prostate segmentation 

on T2w ER MRI. An important aspect of this system is that the main computational step 

of the segmentation is in computing loci of candidate boundary points, and our algorithm 

is such that the estimation of each locus is completely independent of all other loci, with 

regularization as a post-processing step. Therefore, the algorithm has high potential for 

further speedup via a parallel computing implementation. The accuracy and inter-

observer variability of this system was measured using a set of complementary error 

metrics on multiple anatomic regions of interest within the prostate. We used a validation 

methodology in which three different types of error (surface disagreement, region 

misalignment and volume difference) in segmentation results were quantified using five 

error metrics. The error measurements were applied to the prostate gland as a whole, and 

to the apex, midgland and base regions separately. The system improved the 

reproducibility of the prostate segmentation, compared to manual segmentation, 

supporting the central hypothesis of this thesis. The system was shown to require 

minimal user interaction (30 seconds). Our results showed that the choice of manual 

reference segmentation had the biggest impact on segmentation variability, reinforcing 
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the need for multi-operator reference standard segmentations for algorithm validation. 

This study also showed that not only is prostate apex and base challenging (both semi-

automatically and manually), but in fact there is high inter-observer variability in even 

defining the apex-most and base-most extents of the prostate. This sheds light on the 

most critical areas of focus for future development of prostate segmentation algorithms 

on MRI. 

2. Chapter 3 described a novel system for automatic prostate segmentation on 

T2w ER MRI, with accuracy and inter-observer variability measured as in Chapter 2. 

This method takes advantage of the availability of prostate size measurements that are 

obtained during clinical standard TRUS imaging prior to MRI to facilitation an automatic 

coarse localisation of the prostate prior to segmentation refinement using the same 

algorithm as presented in Chapter 2. This method replaced the 30 seconds of manual 

operator interaction time required to use the semi-automatic method in Chapter 3 with 3 

seconds of computation time, at the expense of a statistically significant but small 

decrease in accuracy. The use of the automated algorithm substantially mitigated the 

inter-observer variability observed in Chapter 2 of the segmentation of the base region of 

the prostate by eliminating the need for an operator to decide on the apex-most and base-

most extents of the gland, supporting the central hypothesis of this thesis. The automatic 

algorithm provided improved accuracy, compared to the semi-automatic algorithm, in 

measuring overall prostate volume. 

3. Chapter 4 described an expert user study measuring the impact of using semi-

automatic and automatic segmentations on physicians’ ability to obtain a clinically 

acceptable segmentation via editing a provided starting segmentation, compared to 
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achieving the same end via fully manual segmentation. Although the amount of editing 

required was directly proportional to the amount of automation used to produce the 

starting segmentation (i.e. via fully automated, vs semi-automated, vs manual 

segmentation by another operator), the use of an automatically generated starter 

segmentation yielded lower inter-operator segmentation variability in the final 

segmentation, compared to from-scratch manual segmentation, supporting the central 

hypothesis of this thesis. Using such a starter segmentation was also found to reduce the 

total time required to achieve a clinically acceptable segmentation, also supporting the 

central hypothesis of this thesis. Finally, we found that spatial error metrics such as the 

MAD and DSC are not strongly correlated with the amount of editing time required to 

render a segmentation clinically acceptable. This observation challenges the comparison 

between two algorithms’ performance based on the values of the spatial metrics. Since 

for clinical purposes, a segmentation judged by a physician to be clinically acceptable can 

be taken to be accurate (because the physician will use this segmentation for the 

intervention at hand), the practical purposes of computer-assisted segmentation are (1) to 

assist the physician in obtaining a segmentation that is clinically acceptable to him/her in 

less time than would be required for manual segmentation, and (2) to increase 

consistency of patient care for procedures depending on prostate segmentation on MRI. 

Thus, to evaluate an algorithm’s suitability for clinical translation, algorithm developers 

need to directly measure the required editing time for multiple operators to achieve 

clinically acceptable segmentations; spatial error metrics cannot be used as a surrogate 

for editing time. Rather, the value of  spatial error metrics is in measuring inter-operator 

segmentation variability; decreasing this variability is a step toward increasing 
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consistency of patient care and increasing consistency of execution of multi-operator and 

multi-centre clinical trials involving prostate segmentation on MRI. 

5.2 Applications and future directions 

The segmentation techniques and evaluation methods developed in this thesis 

support research applications in which prostate segmentation in T2w ER MRI is either 

being studied or being employed, or clinical applications that require prostate 

segmentation on T2w ER MRI. In the following section, several applications that could 

potentially benefit the segmentation algorithm will be discussed. Some remaining gaps in 

knowledge that could be covered as part of future work will also be discussed. 

5.2.1 Applications in ongoing clinical research studies 

In an ongoing clinical research studies in our group [1], for a mechanically-

assisted targeted prostate biopsy system, surface-based MRI-TRUS registration was 

required. The TRUS images were segmented using a semi-automatic algorithm. For the 

MR images, manual segmentation of the prostate was used. Our segmentation algorithms 

could be used to facilitate the surface-based image registration and MRI-TRUS fusion, to 

decrease processing time and mitigate inter-observer variabiility. The impact of MRI 

segmentation error and variability on the MRI-TRUS registration error could be studied 

before and after applying manual editing to the segmentation labels, with the ultimate 

endpoint being the impact on positive yield at biopsy as measured in a prospective study.  

In another clinical research study [2, 3], manual segmentation of the prostate on 

T2w MRI has been employed in an MRI-compatible mechatronic system that was 

developed for MRI-guided needle insertion to the prostate. In this system, a preoperative 
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and an intraoperative ER prostate MR image are manually segmented and registered 

together for mapping defined targets from the preoperative image to the intraoperative 

image. Our segmentation algorithms could be applied to both pre- and intra-operative 

images. Our automated algorithm could be particularly helpful to speeding up the 

intraoperative MR image segmentation to reduce the total amount of in-bore procedure 

time required. 

There are also other research studies or clinical applications in which ER prostate 

MRI segmentation is required [4, 5]. In these studies manual prostate segmentation on 

pre-operative T2w MRI was used for surface-based image registration between pre-

operative MRI and either intra-operative MRI or pre-operative ultrasound to localize PCa 

tumours in image-guided biopsy or focal therapy. Therefore, the impact of using our 

algorithm could be investigated in terms of processing time and/or procedure accuracy 

and reproducibility, compared to using manual segmentation. 

5.2.2 Suggestions for future work 

We have studied the accuracy and reproducibility of a segmentation algorithm as 

well as the segmentation time that is required to have clinically acceptable contours. To 

the best of our knowledge, the impact of segmentation error on the final results of a 

clinical procedure has not been extensively studied; e.g. the impact of MRI segmentation 

error on PCa targeting in an MRI-targeted TRUS-guided prostate biopsy, or on the results 

of radiation therapy dosimetry. Hence, it is also important to study the impact of the 

segmentation error and variability, before and after manual editing, on the performance of 

some of the clinical applications in which ER prostate MRI segmentation is used. 
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The presented segmentation approaches, although highly amenable to parallel 

implementation, were implemented sequentially. Hence, an important future step for this 

work would be implementation of the algorithm for parallel computing on a graphics 

processing unit (GPU), and we would expect at least an order of magnitude lower 

computation times from such an implementation. Using an unoptimized implementation 

of the algorithm on a Matlab research platform and running on a single central processing 

unit core, the segmentation takes less than 90 seconds, on average. We would expect a 

GPU implementation to therefore run in well under 10 seconds. 

Our observation of no meaningful correlation between the values of the five error 

metrics used in this work and the required editing time to achieve a clinically acceptable 

segmentation leads to the recommendation that editing time must be measured directly 

for multiple observers in order to assess an algorithm’s suitability for clinical translation. 

This renders algorithm evaluation much more expensive in terms of time and effort, and 

requires the engagement of clinical colleagues which is challenging in many computer 

science and engineering contexts which may be located distant to clinical centres. There 

is therefore potential value in future work designing and validating novel spatial error 

metrics that are more accurately predictive of required editing time. The data set 

generated as part of our study in Chapter 4 could provide initial validation of novel 

metrics for this purpose. 

Since PCa tumours are most likely to be found within the peripheral zone of the 

prostate gland, in some the clinical applications the segmentation of the prostate gland 

into its zones could be helpful. Therefore, zonal segmentation of the prostate gland could 

be taken into account as another step forward. According to the appearance of the 
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peripheral zone in T2w MRI (i.e. usually a brighter region compared to the surrounding 

tissues) the same local appearance-based segmentation method we used for whole 

prostate gland segmentation might be also applicable for zonal segmentation of the gland. 

This segmentation method could also be utilized in segmentation of any other 

organs or objects that have convex shapes and inter-patient local appearance consistency 

withing different parts of the object boundary, despite of inter-patient appearance 

differences inside or outside of the object. 

Finally, The conclusions of this work are valid only in the context of our own 

segmentation techniques, and the results might differ if the operator editing study were 

conducted with different algorithms. Moreover, due to the small size of the data sets  and 

the number of operators involved, this should be considered to primarily be a set of 

hypothesis-generating studies that point the way to potentially fruitful studies on larger 

sample sizes with sufficient statistical power to draw firmer conclusions. We also did not 

study the effect of MR pulse sequence parameters on the results. 
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